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PREFACE

“I am putting myself to the fullest possible use, which is all I think that

any conscious entity can ever hope to do.”

As spoken by HAL 9000,

2001: A Space Odyssey (Kubrick, 1968)1

Creating computers that are as fluent in human language as

people has long been a goal for scientists and the general public.

Human language communication both represents and challenges

an intelligence, because while languages appear to follow some

unseen rules of spelling and grammar, we have never been cer-

tain about what they are. Even when one expert seems to have

proof of a “universal” theory, another expert may be just as cer-

tain to have found an exception to it2. And yet, spoken or written

language is still seen as the ideal for communicating with both

people and complex devices. Systems that understand or use

language, which we call “Natural Language Processing” (NLP)

systems, have been created by specifying algorithms for com-

puters based on the observable regularities of language noted by

experts. There is even enough statistical regularity to language

that, with enough examples of the right type, one can create

highly accurate systems using methods that “learn” or “program

themselves”. The time has come when it may not always be clear

whether the entity we are communicating with is another person

or a “bot”.

Read this book to learn the principles and methods of NLP to
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understand what it is, where it is useful, how to use it, and how it

might be used people. The book includes the core topics of mod-

ern NLP, including an overview of the syntax and semantics of

English, benchmark tasks for computational language modelling,

and higher level tasks and applications that analyze or gener-

ate language, using both rule-based search and machine learn-

ing approaches. It takes the perspective of a computer scientist.

The primary themes are abstraction, data, algorithms, applica-

tions and impacts. It also includes some history and trends that

are important for understanding why things have been done in a

certain way.

The book presumes basic proficiency in programming and dis-

cusses topics at that level. It does not attempt to teach the under-

lying mathematics, to reduce the overall length of the book. The

book does not focus or depend on any particular programming

language or software library, as there are now many options, for

a variety of languages including Python, Java, and C++. Examples

from the most widely used tools are provided.

This book will be appropriate for anyone who understands

computing with data structures and wishes to get an overview

of the field of natural language processing and recently devel-

oped methods. While background in artificial intelligence, linear

algebra, linguistics, probability, or statistics would be helpful,

this background is not essential for using this book. To use the

software that is discussed, skill prerequisites include program-

ming with arrays, tables, trees, graphs, graph search algorithms

(e.g., breadth first and depth first) and installing open source

software tools or libraries, such as Anaconda, the Natural Lan-

guage Toolkit (NLTK) or spaCy. Readers with less programming

background can often use online demonstration systems to learn

about the capabilities of the different components of modern

NLP systems. The book includes URLs to many of these systems

that were active at the time the book was written, but the reader

should be aware that some may disappear over time.
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Notes

1. Kubrick, S. (1968). 2001: A Space Odyssey.

2. Everett, D. L. (2016). An Evaluation of Universal Grammar and the

Phonological Mind. Frontiers in Psychology, 7, 15.

x SUSAN MCROY



CHAPTER 1.

NATURAL LANGUAGE PROCESSING AS A

DISCIPLINE

Natural language processing (NLP) is the discipline of designing

and using computer programs to analyze or generate human lan-

guage. Human language is an essential tool for expressing ideas,

but it is also very diverse. On top of the differences in words

and sentence structure of different groups, there are also differ-

ences that depend on how language is being used. Language can

be formal or informal, technical or nontechnical, and occurs in

a growing variety of forms from brief messages (like “tweets”)

to entire books. Another distinction is between structured data

and unstructured data, sometimes called “free text”. Structured

text is where the fields of a table or record contain only a single

phrase and the range of possible values is determined by the

type of record. An example of structured text would be the fields

of a database, which might include things like the name of the

author, title, subject headings, and the publisher. An example of

structured speech would be the phrase-level responses collected

by an Interactive Voice Recognition system as it tries to route

your call. Unstructured text is where the text contains one or

more complete phrases or sentences, without an explicit indi-

cation about their intended use or interpretation. Examples of

unstructured text are newspaper articles or a physicians’ clinical
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notes. Examples of unstructured speech would be audio record-

ings of conversations or speeches.

Many documents contain both structured and unstructured

text. Figure 1.1. shows examples of both types taken from the

website of a gaming platform, Steam1. The text on the left con-

tains structured data provided by the organizers, while the text

on the right is the first sentence of a review posted by a website

user.

Figure 1.1 Examples of structured and unstructured content from the Steam
webpage for the game Dota 2

Some structured text Some unstructured text

Title: Dota 2
Genre: Action, Free to Play, Strategy
Developer: Valve
Publisher: Valve
Release Date: Jul 9, 2013
RECENT REVIEWS: Mostly Positive
(6,921)
ALL REVIEWS: Very Positive
(1,004,927)

I started playing this game back when it was
a mod on warcraft 3, it was great then, the
community was ayy ok, not so bad, a little
toxic but not too toxic…as the years went by I
moved out from my parents house and had
less time to play the game I had become
addicted to, the game I would spend my
Friday and Saturday night doing whilst the
normal kids were out getting drunk on there
18th birthday.

Unstructured text can give valuable insights; for example, NLP

can be used to automatically decide if opinions like these are

negative or positive. Analyzing structured text can be useful for

statistical analysis tasks, such as deciding which game genres

are most popular or for building search applications for retriev-

ing games or reviews. These differing degrees of structure will

impact the methods needed to make sense of the data: the more

structure, the less processing involved.

NLP is both a mature discipline going back to the 1950’s2

and a rapidly evolving discipline, exploiting some of the most

recent advances in Artificial Intelligence, such as Deep Learn-

ing. While the structures and meaning of natural language have

not changed much, new applications and implementation strate-

gies have emerged to exploit the growing availability of large

amounts of natural language data. Early approaches to NLP

were based on researchers’ own knowledge, or that of other
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experts, with limited amounts of evidence to validate the

approach. Modern NLP often follows the following general pat-

tern: Identify a real-world concern, obtain samples of relevant

data, pre-process and mine data to suggest patterns and research

questions, and then answer research questions or solve technical

problems by finding functions that capture complex correlations

among different aspects of the data and validating these models

with statistical measures. For example, Figure 1.2 shows an

example conceptualization of an important problem: discovering

whether patients have experienced side effects while taking a

medication that may not have been discovered during clinical

testing when the drug was approved (and may not even have

been yet reported to their medical provider).

Figure 1.2 Conceptualization of a typical NLP problem

Conceptualization Example

Concern New medications may have negative consequences that
emerge after initial testing.

Data Postings to social media by patients.

Patterns Certain words reflect positive or negative opinions.

Question What negative side effects (adverse drug events) are being
mentioned most often?

NLP methods combine ideas from computer science and arti-

ficial intelligence with descriptive accounts of language and

behavior, as provided by the humanities and the social and nat-

ural sciences. Human languages most differ from programming

languages because of the possibility of ambiguity. Ambiguity

arises because individual words can have different senses (such

as “duck” as a water fowl and “duck” as the action of moving

away from something). Words can also have unrelated, nonlit-

eral meanings when they occur together with other words, such

as “to duck a question”. Ambiguity can also occur at the level
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of a sentence, as in “We saw a duck in the park”, where it is

unclear whether the viewer or the viewed was in the park. We do

not tend to notice ambiguities like these when we communicate,

because usually the context makes the intended meaning clear.

An exception are puns, which are humorous exactly because we

notice both meanings at once. Figure 1.3 includes an example

pun.

Figure 1.3 Example of a pun

Pun Multiple meanings

Our pet duck keeps biting

everyone, so I bought a cheap

muzzle for it. Nothing flashy,

but it fits the bill.

“fits the bill” as an idiom (i.e., “suitable for the

purpose”)

“fits the bill” as a compositional expression

(“the right size for the beak of a duck”)

Another source of complexity is that language exists at multiple

levels of abstraction at the same time. Language produced in

context has a literal form (what was said or written) and an

intended meaning, which can be explicit or can involve inference

to obtain implicitly expressed meanings3. An example of this lit-

eral/non-literal ambiguity occurs with “Can you pass the duck?,”

which has the literal form of a yes-no question, but is also used

as a request.

To help address these multiple levels of meaning, the discipline

of natural language processing draws upon insights from many

disciplines including linguistics, mathematics, philosophy, soci-

ology, and computer science. These disciplines have a long his-

tory of trying to explain linguistic phenomena or to provide an

analysis of human behavior, based on text. (The first concor-

dance of the Bible was created in 12304.) Today, insights from

these earlier analyses have been used to specify properties of

words and methods for identifying legal sequences of words.

These insights have also helped us to identify some core tasks for

language models such as determining whether a given sequence

of words can be derived from the rules of a language, selecting
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among multiple possible derivations for a sequence, extracting

semantic information from sequences, and determining whether

accepting the truth of one expression of natural language

requires accepting the truth of some other.

1.1 APPLICATIONS OF NLP

Natural language processing is both a method of science and

of practical applications. Analyzing human language can help us

learn about people who are the target of a product or service or

to extract information from user-generated content, to inform

the design of new products and services. Information extraction

identifies concepts useful for other programs, such as looking

for mentions of symptoms in a doctor’s notes to aid in decision

support or to map what had been expressed as unstructured,

free text into relations in a database (structured data). Language

analysis can be a part of assessing the writing or the writer,

such as to improve the grammar of a document or to measure a

writer’s skill or knowledge. Generating human language can be a

way of presenting structured information in a more understand-

able or personalized form.

NLP can also be a mechanism for qualitative research. Quali-

tative research is a method of gaining information from a target

population typically by asking a sample to complete a carefully

crafted survey and then looking for emergent themes. However,

survey bias is always a risk; it is very hard to write questions

to test a hypothesis without survey subjects being able to detect

what the hypothesis is, which might easily affect their response.

An alternative is to look for instances where people have

expressed their views on a topic publicly. Social scientists, mar-

ket researchers, and healthcare providers have been investigating

what people have said in their posted reviews of products, ser-

vices, and medicines through websites like Amazon.com,

Yelp.com, and Drugs.com. In the next few sections, we will

overview some specific examples and potential opportunities in

three broad areas: applications to support social good, applica-
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tions to support public health or health care, and applications to

support business.

1.1.1 Applications for Social Good

There are many dangers in our world, including terrorists, bul-

lies, and even ourselves (when our concerns become depression

or anxiety.) The internet has become a place where many of

these dangers first appear. In March 2019, there was a mass

shooting in New Zealand in which at least 49 people died.

According to investigations by journalists, the shooter had been

posting to online message boards associated with violence as

many as three years before the tragedy5. NLP has also been used

to identify reports of natural disasters posted to Twitter.6 We

also face some smaller dangers such as poor hygiene in restau-

rants or intentional misinformation posted to reviews of con-

sumer products and services. In each of these scenarios, NLP

could play a role in early detection of such dangers by processing

articles created by news services or the postings of the general

public in online social media like Twitter, Facebook, and Reddit,

much faster than people could. Research on the detection of fake

reviews, hate speech and cyberbullying, and depression has been

ongoing since 2009, and are now accurate more than three-quar-

ters of the time7.

In addition to helping keep people safe, NLP also has applica-

tions that can help people improve the quality of their lives. For

example, there are efforts to help people with visual impairments

by automatically translating visual information on the Web into

non-visual information, such as a spoken description. There has

also been an increasing interest in the creation of chatbots to

support humanitarian causes. For example, in 2018, the Com-

puter-Human Interaction (CHI) conference organized a Special

Interest Group (SIG) meeting dedicated entirely to creating chat-

bots for social good. Examples of social good that were discussed

include helping find donors to support worthy causes and help-
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ing promote social justice by allowing people to document and

share their experiences with the police.

1.1.2 Applications for Public Health and Health Care

Public Health involves preventing illness; healthcare involves

diagnosing and treating illness. Natural language processing

applications related to these topics can help in the dissemination

of knowledge about how to stay healthy and the development of

new treatments by helping to find associations between diseases

and treatments that span multiple published articles. NLP can

call attention to consumer-reported problems with medications,

treatments, or contaminated food – reports which might appear

in social media before formal reports are submitted to govern-

ment agencies, such as the FDA or the USDA in the United

States. NLP is being used to improve health care quality by giving

providers quantitative evidence of which treatments are most

effective for particular populations of patients. It is still the case

that there are clinically documented features and risk factors

(such as smoking status or social determinants) that only appear

in unstructured clinical notes in electronic health records, rather

than in more easily processed data from structured checklists.

There are some health conditions where the best treatment

option is also dependent on the values or preferences of a patient,

but to play a role in more shared decision-making, patients also

need to have a good understanding of their condition and

options. NLP methods can help assure that they have this under-

standing and that their concerns are being addressed, by provid-

ing descriptions in appropriate language or giving them more

opportunities to obtain health information outside a clinical

encounter.

In the future NLP may be able to improve the communication

between providers and patients by allowing providers to “talk” to

their medical records software and their patient at the same time

– rather than appearing to remove their focus from the patient.

Major health care providers and U.S. government research insti-
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tutes (including the Mayo Clinic, Harvard Medical School and

Massachusetts General Hospital, and the National Library of

Medicine) have longstanding research units dedicated to NLP

and have been leaders in the dissemination of software and data

sets to advance the discipline. There have also been commercial

enterprises dedicated to NLP in healthcare, such as TriNetX.

1.1.3 Applications for Business and Commercial Enterprises

Applications of NLP can be used to meet commercial objectives.

A company might provide language services such as machine

translation, abstraction, summarization or some type of docu-

ment delivery. For example, starting in the 1970’s both Lex-

isNexis and Westlaw began to provide computer-assisted legal

research services for professionals; and now these companies

provide access to more than 40,000 databases of case law, state

and federal statutes, administrative codes, newspaper and maga-

zine articles, public records, law journals, law reviews, treatises,

legal forms, and other information resources. Banks and

providers of financial services technology are using NLP to help

detect fraud. (Ironically, this work has been helped by the avail-

ability of datasets derived from Enron employee email8, follow-

ing one of the most notorious cases of investment fraud in

American history.) Or, a company might be interested in using

NLP for keeping their customers engaged or providing them

solutions targeted towards their expressed needs or buying

habits. (Tasks such as these, as well as customer relationship

management (CRM) and customer support, can be found in

online job advertisements.) By using NLP, employers hope to

automate tedious data entry tasks that require extracting data

from unstructured sources such as email, customer support

requests, social media profiles, service logs, and automatically

populate contact record with individual and company names,

email, and physical addresses. They might also want to more eas-

ily use data that has been collected in unstructured form, such as

website text boxes or telephone calls recorded for quality assur-
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ance. Sometimes the goal is to improve customer engagement by

answering common customer questions more quickly by deploy-

ing a chatbot, rather than making people wait for a human to

respond.

Businesses want to know whether customers like their prod-

ucts and why. Very accurate techniques have been developed to

recognize whether people are positive or negative about a prod-

uct based on the words they use in their reviews (called sen-

timent analysis or opinion mining). A similar strategy can be

used for other classification tasks. For example, marketing expert

Anne Gherini, has observed that (her) “customers use different

words, phrases, and sentence structures at different stages of the

buying cycle. Whereas, they tend to use interrogatives such as

“who”, “what”, and “why” in the early stages, they tend to use

verbs such as “purchase”, “become”, “guarantee”, and “discuss”

in later stages”9. These insights suggest that it would be useful

to have automatic methods for processing email and other cus-

tomer communications to predict that customer’s stage of the

buying cycle (and hence how ready they might be to make a pur-

chase) and even to help generate a reply correctly targeted to

the stage. Using data from a variety of existing sources, one can

use NLP tools to count the frequency of co-occurring words,

phrases, or statistically related words to count potentially emer-

gent themes, one of the fundamental methods of qualitative

research10.

1.2 MAIN ABSTRACTIONS OF NATURAL LANGUAGES

As just discussed, human language can be used to help solve a

variety of problems. While human languages are very diverse,

there are also many commonalities among languages that enable

us to develop many generalizable models and tools. According to

classical linguistics, the main levels of abstraction for language

are syntax, semantics, and pragmatics11:

• Syntax comprises the rules, principles, and processes that
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appear to govern the structure of sentences, especially

rules that might be common across human languages.

• Semantics comprises the interpretation of sequences of

words into an expression or set of expressions that cap-

tures the entities, relations, propositions, and events in the

“real world” they describe or to elements of some “world”

created by humans (such as queries to a database). Seman-

tics is what we talk about as “the meaning” of a sentence.

• Pragmatics comprises an understanding or representation

of how language is used by people to do things, such as

make requests or ask questions, or what language reveals

about the knowledge or preferences of the people who use

it. For example, the sentence “Can you pass the salt?” is

not typically a yes-no question, it is a request.

Where language is compositional, smaller units (such as words

and phrases) have well-formed meanings that combine in a sys-

tematic way to form the meanings of the larger sequences they

comprise. An example of a compositional semantics might map

each word or phrase onto a relation in a logic. So, “Anu ate

a small apple” might be represented as: [person(p1) and

name(p1,”Anu”) and small(o1) and apple(o1) and event(e1,eat) and

agent(e1,p1) and object(e1,o1)]. By contrast, some expressions

are idiomatic, forming what are sometimes called collocations

or multiword expressions. These expressions are relatively fixed

sequences of words that function together as a single word.

Examples in English include “see the light at the end of the tun-

nel” which means to “see a future time that is better than the

current one” or “bite off more than one can chew” which means

to “have taken on a task one cannot achieve”. Another type of

non-compositionality arises when we use sequences of common

words to give names to organizations or events, such as “Educa-

tional Testing Service” or “The Fourth of July”.

Philosophers of language classify language along lines similar

to linguists’ notions of syntax, semantics, and pragmatics. For
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example, J. L. Austin describes language in terms of a hierarchy of

actions, beginning with the locution, which is what was said and

meant, and corresponds to the physical act of uttering a specific

word or sequence of words (the “phone”), as well as its intended

interpretation as a sentence (the “pheme”) and its referring to

specific objects and relations (the “rheme”). The interpretation of

the locutions form the illocution which includes the intended

interpretation of what was done (e.g. making a statement or ask-

ing a question). The final level comprises the perlocution, which

is what happened as a result – (e.g. eliciting an answer). Both

approaches begin with the word as the smallest unit of analysis,

although new words can be formed from existing ones by adding

prefixes and suffixes, a process that is known as derivational

morphology. Morphology is also used to change the grammati-

cal properties of a word, a process known as inflectional mor-

phology.

The specific categories and properties that describe the syntax

of a language form its grammar. Evidence for the existence of

specific categories comes from the patterns of usage that native

speakers find acceptable. Early work involved field studies – ask-

ing native speakers to classify sentences as good or not. Today

we have additional resources: we can used published documents

and datasets of sentences annotated with grammatical features

as positive examples – and treat anything not covered by these

resources as ungrammatical. Another source of grammaticality

information are the papers written by linguists themselves which

often have included examples of ungrammatical sentences

marked with an asterisk (*)12.

Unacceptability may be due to any of the levels of abstraction.

Figure 1.4 includes some examples and the level where the inap-

propriateness occurs.
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Figure 1.4 Examples of acceptability judgements.

Level of
abstraction

Acceptable Unacceptable

Morphology Maryann should leave *Maryann should leaving

Syntax What did Bill buy *What did Bill buy potatoes

Semantics Kim wanted it to rain. *Kim persuaded it to rain.

Pragmatics

Saying: “What time is it?” as a
question; when the hearer
does not think the speaker
already knows the time.

*Saying: “What time is it?” as a
question; when the hearer
thinks the speaker already
knows the time.

Most of these judgements would be clear to someone who is flu-

ent in English, except perhaps the example for pragmatics. Prag-

matics relies on background information not contained in the

sentence itself, so multiple scenarios are provided. The under-

lying background for the example is that it is only appropriate

to ask a real question when it is likely that the person asking

does not know the answer, because the intended effect of a nor-

mal question is to solicit new information. Questions can be

used appropriately to do other things however, such as make

complaints or indirectly solicit an explanation. A collection of

sentences including both acceptable and unacceptable examples,

including morphology, syntax, and semantics, is found in the

Corpus of Linguistic Acceptability (CoLA). (Chapter 3 will

describe the grammar for English as accepted by most modern

work in NLP, which was derived from work in computational

linguistics.)

1.2.1 Abstractions at the Word Level

Words have a syntax and a semantics, and may also be catego-

rized based on some aspect of their use. One very commonly

used aspect is sentiment. Sentiment is the overall polarity of

opinion expressed by the speaker, which might be positive, neg-

ative, or neutral. Sentiment is expressed through the choice of

words that are conventionally associated with that polarity,

which might differ for a specific domain. For example, a book
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might be “fascinating” (positive) or “predictable”. (We will con-

sider sentiment analysis in greater detail in Chapter 3.) The syn-

tax of a word includes its main part of speech (such as noun or

verb) and subtypes of these categories, based on their properties,

such as a plural noun, or a past tense verb. As mentioned above,

there is no one standard set of categories, although there are sets

of categories that have become standardized. Standardized sets

of category labels are known as tagsets, and a specific example

will be provided when we discuss English grammar. One can also

describe categories as collections of features. In addition to prop-

erties like number and tense, a word type is characterized by the

constraints or preferences it has for words or phrases that pre-

cede or follow it. For example, some nouns, like “bag” must be

preceded by an article and are often followed by a modifier that

says what holds, as in “a bag of rice”. (We will discuss word syn-

tax in greater detail in Chapter 4). The semantics of a word is

the concept or relation that the word would correspond to in the

real world. Because of the existence of homonyms, the mapping

from a word to semantics (or even syntax) requires information

from the context (either surrounding sentences or a representa-

tion of the visible context) to determine the intended analysis.

Figure 1.5 shows the entries for duck found in Wordnet 3.113,

which contains four distinct noun senses and four verb senses for

duck.
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Figure 1.5 Senses of duck found in WordNet 3.1 online
(http://wordnetweb.princeton.edu/perl/webwn)

1.2.2 Abstractions at the Phrase and Sentence Level

Words in sequences form phrases and sentences. The difference

between a phrase and a sentence is that a phrase must describe

a complete entity or property-value pair, but it does not fully

describe an event or state of affairs. A sentence by contrast, will

have a main predicate, typically a verb, and some number of

arguments and modifiers. A simple example would be the declar-

ative sentence: “The cat sat on the mat.” Regardless of whether

it is true, it is complete because it says who did the sitting and

where it sat. In English, we can also have passive sentences, such

as “The mat was sat upon” which are also complete, even though

who did the sitting is unknown. The phrase and sentence types

of a language are determined in much the same way as its word

level categories. Linguists may ask native speakers to judge the

acceptability of combinations of words. They may also try

replacing a whole sequence of words with some other sequence
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and ask about its acceptability, as a way of testing whether those

sequences correspond to the same type of phrase.

Phrases and sentences have a syntax, semantics, and a prag-

matic interpretation. They can also be labelled with general cate-

gories. One commonly used classification is by sentiment, which

was discussed above as a word-level abstraction. The syntax of a

phrase or sentence specifies the acceptable linear order of words,

and the hierarchical structure of groups of words, which is called

constituency. Both order and constituency constraints can be

described by a grammar, using either a set of production rules,

such as Context Free Grammar, or as a set of dependency rela-

tions among words. (We will discuss examples of grammars for

English phrases and sentences in Chapter 4.) A parse tree repre-

sents a trace of a derivation of a sentence from a given grammar.

The semantics of a phrase can be shallow or deep. A shallow

representation involves labeling the phrases of a sentence with

semantic roles with respect to a target word, typically the main

verb.

For example, the following sentence

The doctor gave the child a sticker.

would have roles labeled as follows:

[AGENT The doctor] gave [RECEPIENT the child] [THEME a

sticker ].

A deep semantics of a phrase or a sentence is an expression in

some formal logic or structured computational framework that

maps the words onto the units of that framework. In a logic that

would include terms and well-formed formulas, whereas a com-

putational approach might use an ad hoc slot and filler structure

(such as a record in Java or an object in Python or C).

The pragmatics of a phrase or a sentence captures how it is

being used in context. We will discuss these in Chapter 6.

1.2.3 Abstractions above the Sentence Level

We can also consider language forming units larger than a single

sentence. The larger units include paragraphs and documents,
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but also include structures derived from interactive communi-

cation, such as dialog or multi-party interaction. Unstructured

representations include sets of discrete words or continuous

(weighted) vectors of words, which ignore the order or syntactic

structure within the original units. These representations are

used for information retrieval where the goal is to facilitate

matching rather than to extract information. Structured repre-

sentations include ad hoc slot and filler representations, similar

to what is done for single sentences, but meant to capture com-

plex events described in say, a news article. Structured repre-

sentations can also include tree or graph-like structures, where

phrases or sentences combine to form higher order relations,

such as question-answer, or cause-effect that can be represented

as hierarchical structures based on semantics or rhetorical rela-

tions (e.g., justification or concession). Collections of such struc-

tures are contained in the Penn Discourse Treebank and

Rhetorical Structure Theory Discourse Treebank, respectively.

1.3 SUBTASKS OF NATURAL LANGUAGE PROCESSING

In computer science, qualitative insights have been expressed as

both declarative representations (sets of facts) and processing

models (procedures and functions). Early work relied on repre-

sentations created entirely by hand, by highly trained experts,

and used search algorithms to derive a solution. Now, one can

often use input representations and processing models that have

been created by algorithms whose parameters have been adjusted

automatically using raw (or lightly processed) data. Moreover,

this data is often made available for use by anyone and the algo-

rithms also exist in open source libraries.

Pipelines for processing unstructured natural language start

with the text (possibly including metadata, such as HTML tags)

and convert it into a form that is usable by a software application

before applying a sequence of algorithms that each perform a

different automated analysis and create outputs, in stages. These

stages may be defined independently or as a single networked
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architecture with layers that address specific tasks. Figure 1.6

illustrates the default pipeline used in spaCy, a widely used NLP

software library 14. First there is a process, called tokenization,

where the boundaries between words are identified (usually

when there is a space) and punctuation is removed. Tokenization

typically also includes identifying the root form of a word (also

called its type, or lexeme). The next steps enrich the input rep-

resentation, such as by labelling individual words with their syn-

tactic category (e.g. “’noun”), a process called part of speech

tagging which is performed by a tagger. This process is normally

followed by lemmatization (not shown) which involves identify-

ing the root form of a word and syntactic attributes (such as past

or plural). Then sequences of words from the text are labelled

with their syntactic function (e.g., subject or object). This process

is called parsing and is performed by a parser. Processing might

stop here, or it might continue by recognizing and labelling spe-

cific expressions with a general semantic type, such as names

of people, locations or times, by a process called named entity

recognition (NER). Sometimes words, phrases, or sentences will

also be annotated with a representation of their meaning.

Figure 1.6 Typical NLP pipeline. (Image by spaCy.io)

After the input sequence is suitably enriched, the result is a com-

plex data structure that is represented in the figure as “Doc”.

This structure can be used to form a descriptive analysis of a

text (or set of texts), fed into another processes for automated

categorization or used as input to a software application, such

as a text summarization system. An NLP pipeline might also be

extended to integrate the results with the results from previously

processed sentences, such as to identify the overall rhetorical
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structure (e.g., one text might explain or elaborate upon another),

or to identify when entities mentioned in multiple sentences are

in fact talking about the same entity (a process called reference

resolution). These latter steps are not standardized and are topics

for current research and development.

Although many natural language tasks can be accomplished

using existing software libraries, using them effectively still

involves human judgement and skill. Only human judgement can

determine what problems or opportunities are both worthy and

feasible. The first task for many is to identify and obtain suit-

able data. If the data does not yet exist, one can plan a method

for creating new data, such as through web-scraping or con-

ducting a survey study. The difficulty of these tasks will vary

across domains. Obtaining “personal information” such as health

or financial records is the most difficult, because there are typ-

ically laws to protect the privacy of patients (e.g. HIPAA)15 and

safeguards must be put in place to prevent unintended breeches

of security. Instead, one may need to develop methods using

older data (the records of the dead are not protected) or data that

has been de-identified and made public. After one has data, the

next task is to select (or develop) methods for processing it that

are appropriate to the amount of data. If there is only a small

amount, then one might hand-craft the structures or rules for

processing. Voice applications, such as chat bots, are often devel-

oped this way.

When there is a moderate amount of un-annotated data for

a task, one can develop a phased strategy beginning with hand-

annotation or data labelled with hand-written rules and then use

the labelled data to train an algorithm to do the rest of the task.

For problems with large quantities of existing data, there may

be a way to interpret part of the data as a label for a task, such

as the number of stars in a product review. Then one can train

an algorithm to label other similar examples. Algorithms that

learn strategies for labelling (or assigning a probability distrib-

ution to a set of possible labels) are what is meant by machine
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learning and the models they create include both statistical clas-

sifiers and neural networks. It is usually necessary to experiment

with a variety of alternative learning strategies to see what works

best, including reusing models from existing systems, or coding

a moderate amount of data by hand and then using it to train

a model to code a larger set. Classification-based approaches

often treat the structures produced by NLP as input features,

but classifiers can also be used to perform many of the tasks in

the NLP pipeline. Open source data science workbench tools,

such as Weka, allow one to compare different strategies easily, by

providing most of the algorithms and configuration alternatives

that one might want, without installing any additional software.

Workbenches allow one to select data, algorithms, and parameter

settings using simple menus and check boxes, and provide func-

tions for analyzing or visualizing the results.

1.4 RESOURCES FOR NLP: TOOLKITS, DATASETS, AND

BOOKS

The availability of resources for NLP has been increasing, to

serve a wide range of needs. A recent search of software tool

kits for NLP with updates with in the past 5 years yielded at

least 11 different systems, spanning several programming lan-

guages and architecture (see Figure 1.7). A few organizations

(AllenAI, Google, Microsoft, and Stanford) have created online

demos that have helped people to understand some of the termi-

nology of NLP (by providing concrete examples). Figure 1.8 lists

some notable demos that provide word and sentence level analy-

sis in real-time for examples submitted by visitors to the website,

without creating an account or downloading any software.

Publicly available datasets are also propelling the field forward.

Datasets have been collected from a variety of genres. The oldest

collection of freely available text, spanning multiple genres, is the

Brown Corpus. The largest public collection of cultural works

is distributed by Project Gutenberg, which contains over 60,000

complete literary works in electronic form. The most widely
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used annotated data resource for NLP has been the Penn Tree-

bank. The Linguistic Data Consortium distributes many NLP

specific datasets, some openly and some for a licensing fee.

Totally free datasets can be obtained from the Stanford Natural

Language Processing Group, the Apache Software Foundation,

the Amazon Open Data Registry, and Kaggle.com, to name a few.

There are also online discussion groups devoted to the discus-

sion of datasets themselves, e.g the Reddit forum, r/datasets.

In addition to the documentation for the software frameworks

mentioned above, there are some notable books that include

examples of NLP programming using specific programming lan-

guages. The book “Natural Language Processing with Python:

Analyzing Text with the Natural Language Toolkit16” is freely

available online under a Creative Commons License (CC-BY-

NC-ND), in addition to its printed version. Other books (e.g.

for Java or a tool like PyTorch) are offered as part of a monthly

subscription service that often includes a free trial. One of them

might be a good companion to this book.
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Figure 1.7 Software libraries and tool kits for NLP

Name of
Project What it is

AllenNLP PyTorch-based toolkit for most medium and high level NLP tasks;
includes Elmo word vectors

ClearTK
UIMA wrappers for NL tools (Snowball stemmer, OpenNLP tools,
MaltParser dependency parser, and Stanford CoreNLP) and UIMA
corpus readers

FRED

Machine reading produces RDF/OWL ontologies and linked data
from natural language sentences, includes Named Entity Resolution
and Word-Sense Disambiguation, as a REST service or Python
library

GATE Java framework for most symbolic NLP tasks

Gensim Python software library for topic modelling and similarity detection,
with an embedded word2vec implementation

Natural
language
Tool Kit
(NLTK)

Python software library for most symbolic and statistical NLP tasks
with access to many corpora for many languages (widely used in
education)

Scikit-learn General Python toolkit for ML, but also has functions for text
analytics (e.g., tokenization, classification)

spaCy
Industrial strength libraries for NLP, loadable via Conda or pip, but
has only a dependency parser

Stanford
CoreNLP

Java software library (with Python wrappers) for most symbolic
NLP tasks; maintained by Stanford researchers (used in education
and production systems)

SyntaxNet Tensorflow-based toolkit for dependency parsing; created by
Google

Textblob Python libraries for most common NLP tasks; built from NLTK but
somewhat easier to use, by Steven Loria

Tweet NLP
Python software for most NLP task, trained on Twitter data; older
versions for Java 6 also available (now maintained by CMU
researchers)

Weka
Java datamining software including many NLP tasks with GUI/API;
maintained by researchers at the University if Waikato, NZ. Also has
WekaDeeplearning4j
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Figure 1.8 Examples of online demos for NLP tool kits with unrestricted access

Software Demo Location on the web

AllenNLP demos of semantic labelling, sentence
labelling in several formats, reading comprehension,
and semantic parsing

https://demo.allennlp.org/

FRED demos of machine reading http://wit.istc.cnr.it/
stlab-tools/fred/demo/

Google Parsey McParseface demo of dependency
parsing

https://deepai.org/
machine-learning-model/
parseymcparseface

Stanford CoreNLP demos of word, phrase, and
sentence level annotation in several formats corenlp.run

1.5 OUTLINE OF THE REST OF THIS BOOK

This chapter presented an overview of the discipline of natural

language processing. The goal was to convey both the scope of

the discipline and some of the key application areas and knowl-

edge-level abstractions. Chapter 2 will consider abstractions at

the data and processing level, to overview the types of methods

used to solve the subtasks of NLP. Chapter 3 presents an

overview of English Syntax. Chapter 4 discusses grammars and

parsing. Chapter 5 covers semantics and semantic interpretation.

Chapter 6 presents modern benchmark tasks for language mod-

elling, including grammaticality analysis and sentiment analysis.

Chapter 7 covers the analysis of multi-sentential texts, including

discourse and dialog. Chapter 8 covers various applications of,

and methods for, text content analysis, including question

answering and information extraction. Chapter 9 covers appli-

cations of, and methods for, text generation, including machine

translation and summarization.

1.6 SUMMARY

Natural language processing is a discipline that allows us to tap
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into one of the richest resources of human experience. It is hard

to even imagine an area of social or commercial interest that does

not result in artifacts containing natural language. Although nat-

ural languages and the purposes for which we use it are diverse,

there are essential abstractions that are essential to all of them:

words, sentences, syntax, semantics, and pragmatics that create

an opportunity for creating generalizable methods for analyzing

language. While the first NLP methods relied on small sets of

examples and a high level of human expertise, there are now

large sets of digitized data that have been made available for pub-

lic use that makes methods based on large data sets and the lat-

est advances in artificial intelligence feasible. Additionally, today

there are many highly accurate, freely available software tools for

analyzing natural language.
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CHAPTER 2.

DATA STRUCTURES AND PROCESSING

PARADIGMS

This chapter discusses the most commonly used data structures

and general problem solving strategies for natural language pro-

cessing (NLP). Many data structures of NLP reflect the structure

of language itself. Language in use has both a sequential order

and a hierarchical structure. Thus, data structures such as

strings, lists, trees, and graphs are commonly used. Other essen-

tial data structures for NLP reflect the processes of statistical

machine learning and data science, where vectors and their gen-

eralizations, called tensors, are used for representing associa-

tions between entities and values, such as probability

distributions over categories.

The main processing paradigms for NLP are search and clas-

sification. The search methods all derive from techniques for

searching graphs that are common across computing, such as

breadth-first and depth-first search. NLP also makes use of AI-

specific techniques that aim to make the search more efficient

by modifying the order of the traversal. As an abstract process,

search is a method for addressing questions, where we do not

have a set of candidate answers, such as finding out how a sen-

tence can be derived from a set of rules. By contrast, classifica-

tion is a method for addressing questions, where we do have a

set of candidate answers. We call the systems that select or rank
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the answers “classifiers”. There is a search process, but it usually

only occurs when we build the classifier, rather than when it is

used. However, some implementations of classifiers first create a

probability distribution over the candidate answers and then use

search as a final step to find the best one.

The construction of modern classifiers uses machine learning.

Machine learning systems take minimally processed data as

input and iteratively adjust the values of internal parameters, to

build models that optimize some function, such as minimizing

the error over some set where the answer for each is known.

This phase is called training. It is a type of search where each

step involves increasing or decreasing the value of numeric vari-

ables and evaluating the impact on the error measure. Training

often takes a long time, (and a large amount of data) to create

an accurate model, but during use classifiers are very fast – and

robust because they always provide an answer. However, when

a problem is new, training data may not yet exist, so we may start

with a search-based method.

We will start by discussing data structures and then two pro-

cessing paradigms and their application to NLP. We will also

take a more in-depth look at machine learning, since it plays such

an important role in current implementations of NLP.

2.1 THE DATA STRUCTURES FOR NATURAL LANGUAGE

PROCESSING

The data structures most common to NLP are strings, lists, vec-

tors, trees, and graphs. All of these are types of sequences,

which are ordered collections of elements. Unprocessed data is

usually input as string data which are processed into lists or

vectors, representing individual words, before subsequent pro-

cessing in the NLP pipeline. This processed data is usually not

just a list or vector of strings, but sequences of complex objects

that keep track of various attributes associated with each token,

such as part of speech. Later stages may add additional annota-
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tions, such as marking the beginnings and endings of important

sequences within a sentence, such as the names of entities. This

section will overview the most commonly used data types along

with examples of their application in NLP.

2.1.1 Strings

Strings are sequences of characters. They are the primary way

that unprocessed text data is represented in NLP systems. One

string may be used to hold an entire document, a line of a text

file, a sentence, or a single word. Important operations for strings

include concatenation (creating a string by sequentially com-

bining two input strings into one), matching substrings (e.g., to

check for a prefix or suffix), and finding the length of a string

(e.g., strings that are very short might be abbreviations). Specify-

ing patterns within strings, such as punctuation or word endings,

is usually done by means of strings of text that allow one to name

specific characters, possible ranges of characters (such as [a-z]),

and how often they occur (e.g., once, zero or more, or one or

more times). These formatted strings are called regular expres-

sions and have been in use since the 1940’s but have become

more standardized over time, such as the POSIX Basic Regular

Expression (BRE) format.12

Today, most programming languages (e.g. C++, Python, and

Java) have functions for handling regular expressions3. They also

have mechanisms for specifying substrings (slicing) or particular

ranges of characters within a string. When input to an NLP sys-

tem is provided as a string, the first thing the system will need

to do is separate the string into separate words and sentences.

This step is called tokenization. The general idea is to use white-

space as a delimiter, but the task must also consider special cases,

such as contractions and quoted speech. Software libraries for

NLP, such as spaCy and the Natural Language Toolkit (NLTK),

include prebuilt functions for tokenizing sentences. NLTK

includes five different options, each of which provides slightly

different results.4 Sometimes, getting tokenization right requires
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using hand-built patterns, because people will differ in punctua-

tion habits, such as placing quote marks or parentheses inside or

outside end-of-sentence punctuation.

2.1.2 Lists

Lists and vectors are both ordered collection of elements. Lists

are used to hold sequences where the sizes of elements might

vary, such as sequences of words. Lists can also have more or less

elements over time. (Lists that are immutable during the execu-

tion of a program are sometimes called tuples.) Some program-

ming languages allow direct access to elements of a list using

an index, while some may only allow iterating through them

sequentially from the front. Lists (and more generally sequences)

are often used as the representation format for sharing results

between different stages of an NLP pipeline; for example each

element corresponds to all the information about a particular

token in the order in which it occurred in the original input.

Important operations over lists include being able to find indi-

vidual elements or patterns of elements within the list. Patterns

over elements of a list can make use of regular expressions for

looking within a single token or a list of tokens. For example,

the spaCy toolkit has a function called “matcher” that finds

sequences that match a user defined pattern5. These patterns

can match a variety of word attributes, including the word type

(lemma) or the part of speech. Figure 2.1 shows some example

patterns for spaCy and phrases they would match. Addition

examples can be tested using an online pattern tester provided by

Explosion.ai6
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Figure 2.1 Examples of patterns to use with the spaCy matcher function

Pattern
Example of
matching
phrase

[{"TEXT": {"REGEX": "^[Uu](\.?|nited)$"}},
{"TEXT": {"REGEX": "^[Ss](\.?|tates)$"}},
{"LOWER": "president"}]

United
States
president

[{"ORTH": "("}, {"SHAPE": "ddd"}, {"ORTH": ")"},
{"SHAPE": "ddd"},{"ORTH": "-", "OP": "?"},
{"SHAPE": "dddd"}]

(414)
229-5000

[{'LIKE_NUM': True, 'OP': '?'},
{'POS': 'ADJ', 'OP': '?'},
{'LEMMA': 'duck', 'POS': 'NOUN'}]

three
yellow
ducks

Note that the most common sequences of language will be deter-

mined by the syntax, or grammar, for that language. Deriving the

syntactic structure of a sentence for a particular grammar using

an algorithm is called parsing. Syntax for English will be dis-

cussed in detail in Chapter 3 of this book. Parsing will be dis-

cussed in Chapter 4.

2.1.3 Vectors

Vectors hold elements of the same size, such as numbers, and are

of fixed size. They are one-dimensional, which means elements

can be accessed using a single integer index. Similar represen-

tations of higher dimension are given special names; a matrix is

a two-dimensional, rectangular structure arranged in rows and

columns. The term tensor is used to describe generalizations

of matrices to N-dimensional space.7 Important operations for

vectors include accessing the value of an element of the vector,
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finding the length of a vector, calculating the similarity between

two vectors, and taking the average of multiple vectors.

For much of data science, including modern NLP, vectors are

used as a representation format for a variety of tasks. For exam-

ple, vectors can represent subsets of words or labels from a fixed

vocabulary. To do this, each element corresponds to a single

word in the vocabulary and the value is either one or zero to

indicate whether or not the word is included in the set. Vectors

where only a single element can be zero8 are often used as an

output format (to indicate the selected class label or type of word

in context– e.g. to discriminate between a noun versus verb

sense.) Vector elements can also capture a probability distribu-

tion over a set, where the value of each element corresponds to

the probability of that element, a value between 0 and 1, and the

sum across all such values is 1. Calculating such a probability dis-

tribution is often done using a “softmax” function, which is a

mapping from a vector of real numbers, onto a probability distri-

bution with the same number of elements, where the probabili-

ties are proportional to the exponentials of the input values. Two

applications of vectors are of special note here: the use of vec-

tors to represent documents for information retrieval (which has

been termed the “Vector Space Model”) and the use of vectors for

word embeddings which are a representation of the meaning of

words, which can also be generalized to represent longer phrases

and sentences.

2.1.3.1 The Vector Space Model for Information Retrieval

The Vector Space Model (VSM) 9 was introduced for automated

information retrieval. In the VSM, the elements of the vector

correspond to words in a vocabulary and the value is a weighted

measure that combines the frequency of a term (word type)

within a document with a measure of its frequency across a set of

documents. The VSM draws on the insight that the importance

of a word in a document is directly proportional to the number

of times it appears in a document, but inversely proportional to
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the number of documents in which it appears10. The combined

measure is called “term frequency-inverse document frequency”

(tf-idf). In this context, term frequency is the raw count of the

term in a document divided by the total number of words in the

document. Inverse document frequency is most commonly cal-

culated as the log of the quotient of the total number of docu-

ments in the corpus divided by the number of documents that

contain the term. The log is used to prevent calculation errors

caused by numbers that are too small (called underflow). Vari-

ations of these measures are sometimes used to address data

sparsity (called smoothing) or to prevent bias towards longer

documents (normalization).

Using this model, the similarity between documents (or

between a query and a document) can be determined using

cosine distance, which measures the angle between two vectors.

Figure 2.2 shows the formula for cosine distance, a graph of it

as a function, and a visualization of the angle measured11. What

makes cosine good for measuring similarity is that this function

ranges between zero and one, reaching it maximum only when

the two vectors line up exactly. Cosine similarity is also used to

assess semantic similarity in other applications including when

vectors are used to represent the meaning of words, phrases or

sentences, where they are called “embeddings”. Embeddings are

the topic of the next subsection.
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Figure 2.2 Calculation and visualization of cosine similarity of two vectors

Calculation of cosine between A and B
and a graph of the cosine function Illustration of cosine

2.1.3.2 Word Embeddings

Vectors are commonly used to represent meanings of words.

These vector representations are called word embeddings.

Embeddings differ from document vectors in that the compo-

nents of word embeddings might not correspond to anything in

the real world. Instead, these vectors organize words into a kind

of continuous thesaurus or hash table, giving each word type a

unique vector of numbers that allows us to tell words apart and

also to measure their similarity (such as by the cosine measure

discussed in the previous section). This idea has been explored

most directly in an approach called hash embeddings12.

Vectors are created through an optimization process where the

objective is to minimize the error for some measurable task or

set of tasks. The optimal value is found by searching; the method

used is typically a stochastic approximation of gradient descent.

(We will discuss gradient descent in a later section of this chap-

ter). When pretrained embeddings are used it is important to use

the embeddings that were trained on data most like what is antic-

ipated in the target application. Well-known approaches to cre-

ating word embeddings include: Word2vec, GloVe, and Elmo,

which we overview here.

Word2vec13 converts a corpus of words into numerical vec-
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tors using local statistics; it can either use context (e.g., a fixed

number of words on either side) to predict a target word (a

method known as continuous bag of words), or use a word to

predict a target context, which is called a skip-gram. Two varia-

tions of Word2vec are available: one that works better on high

frequency words and one that works better on low frequency

words. For high frequency words, an approach called “negative

sampling” is used to maximize the probability of a word and con-

text being in the corpus data if it is, and maximize the probabil-

ity of a word and context not being in the corpus data, if it is

not. Finding these optimal values can take a very long time. For

low frequency words, which require higher dimensionality vec-

tors, a more efficient approach called hierarchical softmax can

be selected. It uses a binary tree representation that reduces the

computational complexity to O(log2 |V|) instead of O(|V|), where

|V| is the size of the vocabulary.

GloVe vectors14 15 use global statistics to predict the proba-

bility of word j appearing in the context of word i with a least-

squares objective. The general idea is to first count for all pairs

of words their co-occurrence, then find values such that for each

pair of word vectors, their dot product equals the logarithm of

the words’ probability of co-occurrence.

Elmo (Embeddings from Language Models) vectors16 contain

values that have been learned from a neural network with a par-

ticular architecture known as a bidirectional Long Short Term

Memory (biLSTM or biLM) network. These networks have

multiple internal layers, some of which provide feedback to each

other. Bidirectionality refers to training on both the original sen-

tences and its reverse to captures certain syntactic dependencies

on the semantics of a word. In addition, unlike the other types

of vectors discussed here, the representation of a word using an

Elmo vector is a function of the entire sentence in which it occurs,

rather than just a small number of nearby words.

For a particular application, the method of training is likely to

not be as important as the data that was used to create the vec-
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tors, which should be as similar to the target domain as possi-

ble. There are pretrained vectors available for several common

domains. A common source of pretrained embeddings is the

Stanford Natural Language Group17. There are also programs

(with detailed instructions) that are available to train new vectors

from a corpus. Software for training on new data can be found

within open source and commercial (but free) software libraries,

including Rehurek’s Gensim18 and Fast Text19. The spaCy

library 20 also includes pretrained embeddings within the larger

versions of their language models. The domains commonly used

for pretraining are: Wikipedia (a web-based encyclopedia), Giga-

word (newspaper text, including Associated Press and New

York Times), Common Crawl (web page text), Twitter (online

news and social networking text), Google News (aggregated

newspaper text), and the “1 Billion Word Benchmark”, approx-

imately 800M tokens of news crawl data first distributed at a

machine translation conference (WMT) in 2011. These pre-

trained vectors cover vocabularies of 400K to 2.2M words, with

vectors of dimension from 50 to 300.

2.1.4 Trees and Graphs

When one considers the organization of an entire sentence, or

processing architectures for finding such organization, NLP

algorithms rely on the datatypes of trees and graphs. Graphs are

specified by a set of nodes and connections between pairs of

nodes, called edges. Trees are a special case of graphs where

edges are directed edges and each node has a unique predecessor

(the parent) and multiple possible successors (the children). By

convention the root (a node with no predecessor in the tree) is

drawn at the top. For NLP, data is most likely to be represented

as a tree. Graphs are used as a processing model as a way of rep-

resenting the state of a search or the architecture used to train a

classifier.

Trees are used to represent the syntactic structure of sen-
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tences, because sentence structure includes relations among

words and phrases that may be nested, and each sentence has a

unique head. (The head of a sentence is usually given as the main

verb of the main clause.) Consider the sentence, “The dog ate the

beef.” In this sentence (S), “ate” is the main verb (VBD). The sen-

tence has two noun phrases (NP) nested inside it: “the dog” and

“the beef”. These noun phrases (NP) both contain a determiner

(DT) and a noun (NN). Figure 2.3 shows what this would look

like drawn as a tree, using the symbols from a typical grammar.

Figure 2.3 Example phrase structure parse tree (Image from Stanford
CoreNLP.run)

There is a direct correspondence between nested lists and trees,

so both can be used to represent syntactic structures of sentence.

The structure for the sentence shown in Figure 2.3 is the same

as the following nested list:

(S (NP (DT the) (NN dog))
(VP (VBD ate) (NP (DT the) (NN beef))))

We can also capture this information as a list of subsequences

(called spans), as in the following:
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[(DT, the, 0, 1), (NN, dog, 1, 2), (VBD, ate, 2,3),(DT, the, 3, 4),

(NN, beef, 4, 5), (NP, 0, 2), (NP, 3,5), (VP, 2, 5), (S, 0, 5)]

The type of grammar in this example is called a phrase struc-

ture grammar. Other approaches to syntax focus on binary rela-

tions, or dependencies among the words in a sentence. Figure 2.4

shows a dependency parse of the sentence “I saw three ducks”

(which has been analyzed to include four dependencies: I is the

nominal subject of saw; three is a number modifier of ducks;

ducks is a direct object of saw; and the period is a punctuation

mark).

Figure 2.4 Example dependency structure parse tree (Image from Stanford
Corenlp.run)

Graphs are more general that trees, because they allow nodes

to have multiple incoming edges. While they are not needed

to represent sentence structure, they are helpful in describing

how language is processed. Graphs form the basis of the pro-

cessing architectures for both search based parsing and analysis

using neural networks. In a search, the nodes of the graph cor-

respond to a machine state and possible alternative next states.

In a neural network, the nodes of a graph correspond to oper-

ations or functions, which can have any number of inputs and

outputs. The edges of a neural network, which represent the data

that flows from the output of one node to the input of another

are tensors, as they may be scalars, vectors, matrices, or higher-

dimensionality structures. In both search graphs and neural net-

work, the nodes and edges represent models of process rather

than data.

This concludes our introduction to the data structures of NLP.

We will next consider the two primary processing paradigms:

search and classification.

36 SUSAN MCROY



2.2 PROCESSING PARADIGMS FOR NATURAL

LANGUAGE PROCESSING

NLP is an instance of Artificial Intelligence (AI) problem solving.

AI methods for NLP include search and classification. Search is

used when we do not have a ready set of answers or we are inter-

ested in the derivation of a solution, that is, the steps involved

in reaching it. Search has a variety of uses for NLP, but has been

most closely associated with rule-based parsing. In a search, at

each step, what happens next, is determined from a combina-

tion of stored knowledge and current inputs. Often, there may

be more than one rule or function that applies with different

outcomes depending on which one is applied. When this hap-

pens, different alternatives are considered as part of a search

process, with the search terminating when either the desired out-

comes are achieved or it is determined that a solution is not pos-

sible. Classification involves labeling observations with one of

a known set of categories. This labeling can be done by either

rule-based matching or by applying a classifier that has been cre-

ated using statistical machine learning. This section will consider

both general paradigms. In the next section we will overview

how statistical classifiers are created.

2.2.1 The Paradigm of Search

The general type of search used in AI is called state space search.

Such searches are specified by providing a specification of the

initial conditions, a specification of the termination condition,

and a specification of methods that manifest a transition from

a given set of conditions (or “state”) to another. An AI search

space may be only implicit; nodes may be generated incremen-

tally. States may be explored immediately or stored in a data

structure for future exploration. After being explored, states may

be discarded, if they are not part of the solution itself. Sometimes

the solution is the goal state – to answer a “yes-no” or “what”

question – but sometimes the solution is the path – to answer a
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“how” question, such as “how is a sentence derivable from a given

set of rules that constitute a grammar”.

State space search is a generalization of algorithms for travers-

ing tree and graph data structures, including breadth-first search,

which expands all nodes adjacent to the current node before

exploring further nodes, and depth-first search, which expands

one node adjacent to the current node and then makes that node

the current one, expanding along a single path from the root.

Another type of search is known as best-first search. A best-

first search chooses what node to expand on the basis of a scor-

ing function. For example, a scoring function might favor nodes

believed closest to the goal, which is known as a “greedy” search.

Or, the function might try to balance the accumulated cost of

getting to a node with the estimated distance to the goal, as in

A* search. Another useful best-first search is beam search, where

the number of states kept for future consideration is bounded

by a fixed number, called the “width” of the beam. (This list of

search strategies is not exhaustive, but covers the primary ones

that have been used for NLP.)

Search algorithms are used in NLP for identifying sequences

of characters within words, such as prefixes or suffixes. They

have also been used for parsing, to find sequences of words that

correspond to different types of phrases, where these patterns

have been described using rules. These rules can specify simple

linear sequences of types that are mandatory, optional or can

have specified number of occurrences (e.g. zero, zero or more,

one, one or more), or can specify arbitrarily nested sequences, as

with a context free grammar. For parsing, Beam search has been

used to limit the number of alternatives that are kept for con-

sideration when there are a large number of rules that might be

applicable. Beam search has also been used as a way of finding

the best possible sequence given the results of a machine learning

algorithm designed to provide a probability distribution over

each word in the vocabulary for each word in an output

sequence. This type of algorithm, known as an encoder-decoder,
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is now commonly used for generating text, such as for creating

captions or brief summaries.

Hill-climbing search and its variants use a function to rank the

children of a current node to find a node that is better than the

current one, and then transitions to that state, without keeping

any representation of the overall search path. Gradient descent

is a variant of hill climbing that searches for the child with min-

imum value of its ranking function. For machine learning, this

type of search is used to adjust parameters to find the minimum

amount of error or loss in comparison to the goal by making

changes proportional to the negative gradient, which is the mul-

tivariate generalization of a derivative (akin to the slope of a

line). Hill-climbing and gradient searching do not backtrack, and

hence do not require any memory to track previously visited

states.

2.2.2 The Paradigm of Classification

A classifier is a function that takes an object represented as a

set of features and selects a label for that object (or provides a

ranking among possible labels). The first classifiers were given

as a set of rules. These rules were hand-written patterns (e.g.,

regular expressions) for assigning a label to an object. Rules for

NLP often name specific tokens, their attributes, or their syn-

tactic types. Examples of patterns are shown in Figure 2.1, in

the section that discusses lists. Statistical classifiers select or rank

classes using an algorithmically generated function called a lan-

guage model that provides a probability estimate for sequences

of items from a given vocabulary. Language models can contain

varying amounts of information. A small, simple model might

only have information about short sequences of words and the

correlation between those sequences and sequences of labels

(such as parts of speech or entity types), while a more complex

model might also include meaning representations, called

embeddings, that were discussed as an example of vectors.

Statistical classifiers can be designed to either pick the single
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best class or to provide a ranked list of possible classes along

with a score of their certainty or estimated probability of being

the correct class. One example of a single-best classifier is a Per-

ceptron Classifier, which represents both the input features and

model weights as vectors, computes their dot product (which is a

sum of the products of the corresponding entries of the two vec-

tors) and returns the one with highest value. Figure 2.5 shows the

pseudocode for a perceptron classifier. (The training of a percep-

tron will determine the value of the weights.)

Figure: 2.5 Pseudocode for a Perceptron classifier

Today, most classifiers are created via supervised machine learn-

ing. Supervised Machine Learning (SML) is a method of creating

a function for combining the contributions of different features

of the input to select an output class that will best match the

output classification given to similar examples from the training

data. SML models are trained using data sets of instances where

the correct class has been provided, either by asking people to

annotate the data based on a guideline, or by using some aspect

of the data itself, such as a star rating, as the class.

Classification as an approach has become increasingly impor-

tant as many NLP tasks can be mapped to classification tasks,

given the right representation. For example, the task of recog-

nizing named entities within a sentence and labelling them with

their type, such as PERSON (PER) or LOCATION (LOC) can be

cast as a classification task using an encoding called IOB, which

stands for “inside” “outside” “beginning”, to classify each word
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in the entity sequence. Words marked with tags with the prefix

“B” are the first word in the sequence. Words marked with tags

with the prefix “I” are “inside” the sequence. All other words are

“outside” which means that they are not part of any recognized

entity. After a named entity classifier is used, another process can

traverse the classified tokens to merge the tokens into objects for

each entity. Figure 2.6 includes an example of IOB encoding for

named entity recognition.

Figure: 2.6 IOB encoding for the sentence “Ruth Bader Ginsberg went to New
York”

Ruth/B_PER Bader/I_PER Ginsberg/I_PER went/O to/O New/B_LOC York/I_LOC

The same approach can be used for the task of marking the noun

phrases within a sentence. Figure 2.7 shows an example of an

IOB encoding for bracketing noun phrases21.

Figure 2.7 IOB encoding for the sentence “The bull chased the big red ball around
the yard.”

The/B_NP bull/I_NP chased/O the/B_NP big/I_NP red/I_NP ball/I_NP around/O
the/B_NP yard/I_NP

Classification can be applied to units of different sizes (e.g. words

or complete sentences) and can be applied either to each input

unit independently, or performed to optimize over a sequence of

units (called sequence modelling). For example, we might want

to classify all elements of a sequence of words in a phrase at

the same time. Examples of methods used for sequence model-

ling include Conditional Random Fields, Hidden Markov Mod-

els, and neural networks. A simple neural model that has been

used effectively for some NLP tasks is the Averaged Perceptron.

Another alternative is to classify sequences using a structured

output label (such as a parse tree) rather than a discrete symbol or

an unordered set of symbols. Structured modelling can be more

accurate than either word-level modelling or sequence modeling,
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however obtaining training data with structured labels is harder,

and would require a much more complex type of neural network,

involving multiple layers. More information about machine

learning, and its use in training classifiers, will be discussed in the

next section.

2.3 OVERVIEW OF MACHINE LEARNING

Approaches for learning models based on machine learning have

their origins in search, where the goal of the search is to find a

function that will optimize the performance of the system. The

term “machine learning” was first coined by Arthur Samuel in

the 1950’s to describe his method for developing a program to

play the board game of checkers. His game player selected the

correct move for each turn based on a function that combined

the contributions from features such as piece position and mate-

rial advantage. This function was trained by adjusting the coef-

ficients of a linear polynomial to favor “book moves” (a type of

supervised learning) and moves that increased the average num-

ber of wins over repeated games against itself. Today we would

call such an approach reinforcement learning or semi-supervised

machine learning. Thus, although ML classifiers do not search

during the classification process itself – it is more like table

lookup or hashing – the training algorithms for machine learn-

ing do use search to create the functions that combine the con-

tributions of different features. A common type of search used

in machine learning algorithms is gradient descent, as they try to

minimize the amount of error or “loss” between the output value

of the system and the true value, based on the data.

Samuel’s approach introduced several ideas that are still used

among all machine learning methods today: algorithms learn

models for making a decision about what to do (or how to label

something) based on a set of observations, each of which is rep-

resented as a finite number of attributes (also called features).

These features may correspond to an unordered set, or they

may represent a sequence. The algorithms all have some training
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objective which can be internal (e.g., minimize the amount of

error on training data) or external (e.g., maximize the number of

games to be won when the model used in simulated play). The

algorithms “train” by changing the values of internal parameters,

such as coefficients of scoring functions over several iterations

until they converge at an optimal configuration (or some fixed

maximum determined externally).

A machine learning approach that has a long history, and is still

used today, is decision tree learning (such as ID3, C4.5, J48, Ran-

dom Forest, etc.). A decision tree is a tree where each node repre-

sents a test on one of a fixed set attributes of the input. Each edge

out of a node represents one possible outcome for the test, like

the different branches in a case statement (or switch) in a pro-

gramming language. For example, a binary test has two branches

one for true and one for false. Figure 2.8 shows a decision about

whether the weather is comfortable for being outside, which can

be yes or no. The tree considers three attributes of the input: the

wind (which can be strong or weak), humidity (which can be high

or normal), and weather (which can be sunny, cloudy, or rainy).

The paths through a tree correspond to rules that can be used

to classify examples, with the leaves indicating the value of the

class variable. Thus, any input whose value for weather is cloudy

would be classified as yes (a comfortable day to be outside).

Figure 2.8 Example of a decision tree

Over a set of attributes, many different decision trees are possi-

ble, but there are a small number of optimal trees that minimize

the number of tests that must be performed. The trees can be
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learned from labelled examples by searching through the space of

all possible trees by doing a greedy best-first search that picks the

best attribute at each step and terminates when either all remain-

ing examples fall within a single branch or all attributes have

been tested. It has been shown that the “best” attribute to test

at a given node in the tree is the one that best splits subset of

examples that match a particular path in a decision tree. The best

split is determined by some function, such as information gain22.

One advantage of decision tree learning is that it provides easily

extractable information about the importance of each attribute

in how examples are classified.

Today, there are many algorithms for training classifiers with

labelled data. The goal of all of them is to find decision bound-

aries between classes that will work well on both the training

data and the future test data. For some problems, a linear bound-

ary is sufficient (see Figure 2.9A) but for others, a nonlinear

boundary is needed (see Figure 2.9B). Linear methods include

decision tree learning algorithms, statistical approaches, like

Naïve Bayes or Support Vector Machines, and shallow neural

networks, such as Perceptrons. Nonlinear boundaries can be

found for clustering methods (such as K-nearest neighbors) and

for neural networks that include multiple internal layers (Deep

Learning). Workbench tools such as Weka and WekaDeepLearn-

ing4J allow one to experiment with a variety of algorithms and

visualize the results.

Figure 2.9 Examples of linearly and non-linearly separable data (images from
Wikipedia)

A: Data that is linearly separable B: Data that is non-linearly separable
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In general, employing machine learning approaches is an itera-

tive process of training and testing. Training means running a

learning algorithm on a data set where the correct class is pro-

vided to the algorithm so it can use the information to find val-

ues for internal parameters. Testing means applying the trained

classifier to a subset of the data that was not used for training,

but where the correct class is known. The performance of the

classifier is then assessed. The most common measures to use

are precision, recall, and F1. Precision is the proportion of cor-

rectly classified items of a given category among the total num-

ber of items it classified as the category. Recall is the proportion

of correctly classified items among the total number of items that

should have been classified as the category. F1 is their harmonic

mean (which is calculated as two times the product of precision

and recall divided by their sum).

Training and test sets can be created through a manual or

automated selection process. Manual selection, while less com-

mon, is sometimes done to assure consistency across training

and testing over time. Manual selection risks biasing the results

however. Instead, experimenters will use N-fold cross-valida-

tion, which is an iterative process where the data set is first par-

titioned into N equal subparts (the “folds”) and then training is

repeated N times, each time with a different one of the subparts

held out as a test set. Afterward, the performance measures are

averaged over all test sets.

The success of training classifiers (of all types) depends pri-

marily on the data set available to train the model. (There can

also be differences due to the training algorithm, so several are

usually tried and compared.) The data used for training should

always be as similar as possible to the target test data and have

enough positive and negative examples for each category, to

minimize the impact of small differences in placement of bound-

aries. It is also important to choose an appropriate internal rep-

resentation of the data as features. A simple approach might

consider each of the individual words – but this can be both too
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much and too little. The set of unique word types in any natural

language is in the hundreds of thousands. One can reduce the

number of features by using only the most important words for

a corpus (e.g., using a tf-idf measure) or the most discriminative

words for a classification problem (e.g., using a mutual informa-

tion measure). On the other hand, just using individual words

may fail to discriminate among different senses of a word, so

one may add bigrams (pairs of words) or part of speech bigrams

(words with part of speech tags) or pretrained word embeddings

for each word in the input as features.

Training classifiers using neural networks requires additional

manual intervention. All versions of these algorithms are run

repeatedly for a preset number of iterations (set by the experi-

menter) and make adjustments to the model of a fixed size, called

the learning rate (also set by the experimenter) in the direction

indicated by the objective function. Values set by the experi-

menter are called hyperparameters and generally they are set by

a process of generate and test. For example, the experimenter

tries different numbers of iterations to see what value provides

the best performance. More is not always better, because running

for too many iterations eventually leads to a problem called over-

fitting, which means that the model will not perform well on

unseen examples. One approach to overfitting in neural net-

works is dropout23, which is where the inputs of some units are

disabled randomly. Whether or not to use dropout is another

user-settable parameter.

Neural networks also have a variety of architectures that can

be configured. So-called “deep” neural networks are organized

with several layers of different types of nodes. See Figure 2.10

from Ruder(2018)24.
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Figure 2.10 Example Deep Network architecture for NLP (Image credit: Ruder,
2018)

Typically, as in the figure, the initial (bottom) layers are used to

create a representation (encoding) of the input or to control the

order in which the network will process an input that comprises

sequence (such as a sentence or pair of sentences). Interior layers

(called “hidden layers”) are used to change the dimensionality of

the data (e.g., to match the input expected by the next layer) or to

learn different substructures or dependencies among features of

the input. The last (top) layers are used to create an output of the

proper type. For example, a softmax layer takes a vector of real-

valued inputs and maps it onto a probability distribution, which

is a value between 0 and 1. The types of optimization functions

used to update the nodes can vary; common examples include

Stochastic Gradient Descent and AdaDelta.

The first systems to use deep learning were built from sepa-

rately trained, pipelined models of tasks such as labelling words

with a part of speech (such as noun or verb) or labelling phrases

with a semantic type, or a syntactic type or function (such as per-

son, noun-phrase or noun-subject). However, the focus has been

shifting towards creating networks that learn general models of

language and work well for a variety of tasks, from discriminat-

ing word senses to selecting the best answer to a question. These
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general networks often are built as so-called “transformer” mod-

els, such as BERT, GPT-2 and XLNet, which are good for clas-

sification problems involving pairs of sequences. Transformers

pair two general purpose subnetworks, an “encoder”, and a

“decoder”. (See Figure 2.11 for an illustration.) The encoder is

trained to model input sequences. A decoder is trained to model

output sequences.

An encoder may be trained to learn dependencies within the

sequences by including layers of “self-attention” that take inputs

from different positions within the sequence25. A unidirectional

model of attention uses the initial words in a sequence to predict

later ones; a bidirectional model26, uses the words on either side

to predict a left-out word, using an approach called “masking”,

resembling the technique of cloze tests used for assessing reading

comprehension27 or the assessment of age-related loss of hear-

ing28 Decoders are trained to include attention to both the out-

put of the encoder, sometimes called the “context vector”, and to

dependencies within the output sequences.

Figure 2.11 Attention within Encoder and Decoder of a Transformer (Image
credit: Vaswani et al, 2017)
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Newer architectures for encoders, developed by Lee-Thorp et al

(2021), replace multiple layers of self-attention with a single layer

of linear transformations that “mixes” different input tokens, to

create faster processing models; the group report that a “stan-

dard, unparameterized Fourier Transform achieves 92% of the

accuracy of BERT on the GLUE benchmark, but pre-trains and

runs up to seven times faster on GPUs and twice as fast on

TPUs”29. Other versions mix a single self-attention layer with

Fourier transforms to get better accuracy, at a somewhat less

performance benefit. Exploring such tradeoff is likely going to

remain an active area of research for awhile.

Both encoder and decoders are trained on large collections of

text, such as Gigaword30, which includes text from several inter-

national news services. Transformers for dialog must be trained

on data collected from interactions between people, which can

be gathered either by scraping portals where people interact

(e.g., for language learners to practice conversation skills) or by

creating tasks for pairs of crowd-workers. These datasets have

then been annotated by researchers at universities or large com-

panies, such as Google. Facebook research has assembled one of

the most comprehensive collections of openly available datasets

and software tools, which they make available through its ParlAI

project31.

For specific sequence to sequence classification tasks, the pre-

trained models are fine-tuned or updated with additional data

from the target domain, such as pairs of questions and answers32.

The pairs of sequences can be given as two separate inputs, {S1,

S2} or, more commonly, they are given as one concatenated

input, by adding special tokens to indicate the start, separation,

and end of each part of the pair, e.g., [Start]-[S1]-[Separator]-[S2]-

[End]. These models have been shown to work fairly well for

question answering, sentiment analysis, textual entailment and

parsing33. One limitation is that these models are big and slow in

production – and thus cannot yet be used for real-time systems

– however they could be used to create training data for simpler
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models. Another concern has been that retraining such mod-

els consumes a huge amount of power; the carbon equivalent of

BERT has been estimated to be around the same a transatlantic

flight34.

Workbench tools for deep learning include a growing number

of preconfigured architectures and also support changing the

values of the control parameters to assess their impact. Finding

the best approach is an experimental process. When trying to

solve a particular problem with these tools, a good way to start

is to learn what algorithms and parameter values have been used

most effectively in the past for similar problems and then try to

replicate the setup for one’s own data using a workbench tool.

There are also software libraries specifically for performing NLP

using Deep Learning, some organized as notebooks, that can

be used to perform experiments or build applications. Software

from the start-up Hugging Face is most available, as currently

it can be run either directly, within Google’s “Colaboratory”,

which includes notebooks for transformer-based NLP libraries

using either TensorFlow 2 or PyTorch35, or from within spaCy,

as “spacy-transformers”.

2.4 SUMMARY

This chapter considered the most used data types and problem-

solving strategies for natural language processing. The data

types include strings, lists, vectors, trees, and graphs. Most of

these are meant to capture sequences (e.g., of letters or words)

and the hierarchical structures that emerge because of grammar.

Feature structures or objects are needed to associate various

attributes with tokens or types (as a way to keep the number

of unique types of a manageable number). The processing par-

adigms of natural language processing include search, classifi-

cation, and more generally, machine learning, where the

development of a language model (including classifiers) using

machine learning represents a complex combination of manual

and automated search to find an optimal model for performing a
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given task. Many steps for these processing paradigms have been

implemented in the form of software libraries and workbench

style tools, however no tool exists that can predict the optimal

approach or identify the most relevant data or the internal rep-

resentation to use. For these tasks, understanding of language,

including levels of abstraction, benchmark tasks, and important

end-to-end applications, will be discussed in the remainder of

this book.
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CHAPTER 3.

OVERVIEW OF ENGLISH SYNTAX

The order in which words and phrases occur matters. Syntax is

the set of conventions of language that specify whether a given

sequence of words is well-formed and what functional relations,

if any, pertain to them. For example, in English, the sequence “cat

the mat on” is not well-formed. To keep the set conventions man-

ageable, and to reflect how native speakers use their language,

syntax is defined hierarchically and recursively. The structures

include words (which are the smallest well-formed units),

phrases (which are legal sequences of words), clauses and sen-

tences (which are both legal sequences of phrases). Sentences can

be combined into compound sentences using conjunctions, such

as “and”.

The categories of words used for NLP are mostly similar to

those used in other contexts, but in some cases they may be dif-

ferent from how you were taught when you were learning the

grammar of English. One of the challenges faced in NLP work is

that terminology for describing syntax has evolved over time and

differs somewhat across disciplines. If one were to ask how many

categories of words are there, the writing center at a university

might say there are eight different types of parts of speech in the

English language: noun, pronoun, verb, adjective, adverb, prepo-

sition, conjunction, and interjection1. The folks who watched

Schoolhouse Rock also were taught there were eight, but a

slightly different set2. By contrast, the first published guideline
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for annotating part of speech created by linguists used eighty dif-

ferent categories3. Most current NLP work uses around 35 labels

for different parts of speech, with additional labels for punctua-

tion.

The conventions for describing syntax arise from two disci-

plines: studies by linguists, going back as far as 8th century BCE

by the first Sanskrit grammarians, and work by computational

scientists, who have standardized and revised the labeling of syn-

tactic units to better meet the needs of automated processing.

What forms a legal constituent in a given language was once

determined qualitatively and empirically: early linguists would

review written documents, or interview native speakers of lan-

guage, to find out what phrases native speakers find acceptable

and what phrases or words can be substituted for one another

and still be considered grammatical. This technique is still useful

today as a means of verifying the syntactic labels of rarely seen

expressions. For example, in the sentence “I would rather deal

with the side effects of my medication”, one might wonder if

“with” is part of a complex verb “deal with” or it acts as a prepo-

sition, which is a function word more associated with the noun

phrase “the side effects”. The fact that we can substitute the verb

“tolerate” for “deal with” is evidence that “deal with” is a single

entity.

There is always some risk of experimental bias when we

depend on the judgements of untrained native speakers to define

the legal structures of a language. As an alternative, there have

been attempts to use evidence of language structure obtained

directly from physical monitoring of people’s eyes (via eye track-

ing) or brains (via event-related potentials measured by elec-

troencephalograms) while they process language. Although such

physiological evidence is less subject to bias, the cost of the

equipment and the difficulty of using it has limited the scale of

such studies. Moreover, both of these physiological approaches

rely on experts to hypothesize about the structure of language,
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conduct experiments to elicit human behavior, and then general-

ize from a relatively small set of observations.

3.1 THE ROLE OF CORPORA IN UNDERSTANDING

SYNTAX

Today, best practice for many subtasks of natural language pro-

cessing involves working with large collections of text, each of

which comprises “a corpus”. Early on in the advent of computers,

some researchers surmised the importance of collecting unso-

licited examples of naturally occurring text and performing

quantitative analyses to inform our understanding. In the 1960’s,

linguists from Brown University created the first “large” collec-

tion of text4. This collection is known as the Brown Corpus. It

includes 500 samples of English-language text, totaling roughly

one million words, compiled from works published in the United

States in 1961. The words of the corpus were then annotated

with part-of-speech labels, using a combination of automated

labeling and laborious hand correction5. Although this corpus is

no longer considered large, it still provides a useful benchmark

for many studies and is available for use within popular NLP

tools such as NLTK (with updated part-of-speech tags). Also, the

technique of combining automated processing and manual cor-

rection is still often necessary.

The second large-scale collection and annotation of natural

language data began in the early 1990’s with a project conducted

by a team at the University of Pennsylvania, led by a Computer

Scientist, Mitchell Marcus, an expert in automated sentence pro-

cessing. This data set is called “the Penn Treebank” (PTB), and

is the most widely used resource for NLP. This work benefited

from a donation of three years of Wall Street Journal (WSJ) text

(containing 98,732 news stories representing over 1.2 million

word-level tokens), along with past efforts to annotate the words

of the Brown Corpus with part-of-speech tags. Today, the PTB

also includes annotations for the “Switchboard” corpus of tran-

scribed spoken conversation. Switchboard includes about 2,400
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two-sided telephone conversations, previously collected by

Texas Instruments in the early 1990’s6. However, the WSJ subset

of the Penn treebank corpus is still among the largest and most

widely used data sets for NLP work. The word-level categories

used in the PTB are very similar to those previously used by lin-

guists, but with changes to suit the task at hand: labels were cho-

sen to be short, but also easy for annotators to remember. Special

categories were added for proper nouns, numbers, auxiliaries,

pronouns, and three subtypes of wh-words, along with common

variants for tense and number.

Another important English language resource is the English

Web Treebank7, completed in 2012. It has 254,830 word-level

tokens (16,624 sentences) of web text that has been manually

annotated with part-of-speech tags and constituency structure in

the same style as the PTB. The corpus spans five types of web

text: blog posts, newsgroup threads, emails, product reviews, and

answers from question-answer websites. It has also been anno-

tated with dependency structures, in the style used in the Stan-

ford dependency parser8.

The most recent widely used English language corpus is

OntoNotes Release 5.0, completed in 2013. It is a collection of

about 2.9 million words of text spread across three languages

(Arabic, Chinese, and English)9. The text spans the domains of

news, conversational telephone speech, weblogs, Usenet news-

groups, broadcast, and talk shows. It follow the same labelling

conventions used in the Penn Treebank, and also adds anno-

tations based on PropBank, which describe the semantic argu-

ments associated with verbs. OntoNotes has been used to

pretrain language models included in the spaCy NLP software

libraries10. It includes words that did not exist when the Penn

Treebank was created such as “Google”11. Another large, but

less well known corpus, is the Open American National Corpus

(OANC) which is a collection of 15 million words of American

English, including texts spanning a variety of genres and tran-

scripts of spoken data produced from 1990 through 2015. The
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OANC data and annotations are fully open and unrestricted for

any use.12. Another well-known, large annotated collection of

newswire next is Gigaword13.

Terminology for describing language has become more stan-

dardized with the availability of larger corpora and more accu-

rate tools for automated processing. Today, nearly every form of

human communication is available in digital form, which allows

us to to analyze large sets of sentences, spanning a wide variety

of genres, including professional writing in newspapers and

journal articles, informal writing posted to social media, and

transcripts of spoken conversations and government proceed-

ings. Large subsets of these texts have been annotated with gram-

matical information. With this data, the existence of linguistic

structures and their distribution has been measured with statisti-

cal methods. This annotated data also makes it possible to create

algorithms to analyze many sentences automatically and (mostly

accurately) without hand-crafting a grammar.

For NLP analysis, there are four aspects of syntax that are

most important: the syntactic categories and features of indi-

vidual words, which we also call their parts of speech; the well-

formed sequences of words into phrases and sentences, which

we call constituency; the requirements that some words have

for other co-occurring constituents, which we call subcatego-

rization; and binary relations between words that are the lexical

heads (main word) of a constituent, which we call lexical depen-

dency, or just “dependency”. In this chapter, we will discuss each

of these four aspects. Along with our discussion of the parts of

speech, we will consider part-of-speech tags, which are the labels

that NLP systems use to designate combinations of the syntactic

category of a word and its syntactic features. (Some systems also

use a record structure with separate fields for each feature, as an

internal structure, but specialized tags are more compact for use

in annotated datasets.)
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3.2 WORD TYPES AND FEATURES

In English, we typically think of the word as the smallest unit.

However, trained linguists make some finer grained distinctions.

For example, linguists use the term lemma, or root, or base form

to describe the canonical form of a word that has several varia-

tions for forming the plural or a particular tense. For common

nouns, like “apple”, this would be the singular form. For verbs, it

is the untensed form (that is the one that would follow the word

“to” in an infinitive, such as “to eat”, “to be”, or “to go”). Linguists

use the term lexeme to describe a word type – which includes

the set of the lemma and all its variants. The term morpheme is

used to describe strings that carry meaning but may be smaller

than a word, such as prefixes (which are substrings at the front of

a word) and suffixes (which are substrings at the end of a word).

Both can add either syntactic or semantic information to a word.

Analyzing a word into morphemes is called “morphology”. Find-

ing the root is called lemmatization. NLP work sometimes uses

the notion of “stems” instead of roots. Stems are substrings of a

word, which can depend on an implementation, as there is no

standard form. They are useful for specifying patterns to match

all members of a lexeme. NLP work also uses the term “token”,

which is an instance of a word as it occurs in use. So, if a sentence

includes the same word twice, there will be two separate tokens

created for it.

Now we will consider broad syntactic categories of words and

the syntactic attributes that occur as variants of spelling. We

will consider these ten types: nouns, pronouns, proper nouns,

determiners, verbs, prepositions, adverbs, adjectives, conjunc-

tions, and wh-words. Most syntactic attributes are indicated by

a specific characters associated with the features involved (e.g.,

plurals are usually formed by adding “s” and past tense is usu-

ally formed by adding “ed”), but sometimes these forms exist as

an entirely different word, that we refer to as “irregular”, such as

“was” being the “first person past tense” form of the verb “to be”.
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3.2.1 Nouns, Pronouns, and Proper Nouns

Nouns are used to name or describe entities, which might be

physical (such as “cat” or “rock”) or abstract (such as “freedom”

or “laughter”) or both (such as “city” or “company”). Nouns can

be singular or plural. The plural form is usually marked with the

suffix “s” or “es”, as in “cats”; if a word ends in “y”, it is changed

to “i” before adding the suffix. Figure 3.1 includes several exam-

ples. Some plurals are irregular, as in “children” or “knives”. Fig-

ure 3.2 includes examples of irregular nouns. Some nouns (called

“count” nouns), unless they are plural, require a determiner or

cardinal number to specify the denoted set, e.g. “the boy” or

“three boys”. Nouns occur in the subjects of sentences and as

objects following a verb or preposition. Figure 3.3 shows the typ-

ical placement of nouns within a simple sentence.

Figure 3.1 Example of nouns with a plural formed with -s or -es suffix

Singular form Regular plural form

frog frogs

idea ideas

fly flies

fox foxes

class classes

Figure 3.2 Example of nouns with an irregular plural

Singular form Irregular plural form

child children

sheep sheep

goose geese

knife knives
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Figure 3.3 Typical placement of nouns

Noun in the
subject

Main
verb

Noun in an
object

Noun in a prepositional
phrase

The boy put his towel in his locker

There are some subtypes of nouns, namely proper nouns and

pronouns, that are so different from common nouns that anno-

tation for NLP treats them as separate categories, although they

occur in similar contexts.

Proper nouns are the names of people, places, and things and

are capitalized wherever they occur, as in “My name is Susan”.

Proper nouns rarely appear as plurals, but since they sometimes

do, as in “We visited the Smiths”, NLP systems include a category

for plural proper nouns.

Pronouns are used to refer to people and things that have been

mentioned before or presupposed to exist. They have different

forms to specify whether they are singular or plural and their

syntactic role (subject or object). In a grammatical sentence, the

form should agree with the properties of the verb, although cur-

rent NLP systems often ignore these features and only use only

one category. One subclass of pronouns that is distinguished

are those that express possession, and can be used in place of a

determiner, e.g., “my book” or “your house,” and this subclass

may also be assigned a separate part of speech. Also, some pro-

nouns are used to form a question and thus also merit their

own labels. They include both regular wh-pronouns, including

“what”, “who”, and “whom,” and possessive wh-pronouns, such as

“whose”.

Common nouns and proper nouns are considered an open

class of words, which means people may invent new ones to

describe new objects or names. By contrast, pronouns are con-

sidered a closed class of words. With open-class words, algo-

rithms must address that new items might occur that will be

outside of the known vocabulary.
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3.2.2 Determiners

Determiners include “the”, “a”, “an”, “that”, “these”, “this”, and

“those”. There are also determiners that are used in questions,

such as “what” and “which”. Determiners only occur in noun

phrases, before any adjectives or nouns. Some common nouns,

when they express a mass quantity, like “water” or “rice”, or when

they are plural like “cats”, do not require a determiner. Proper

nouns generally do not allow a determiner, except when they are

plural, e.g., “The Smiths” or when it is part of the name itself,

e.g., “The Ohio State University”. Possessive phrases, which are

marked with an apostrophe and the suffix “-s”, can take the place

of a determiner, as in the phrase “my mother’s house”. Pronouns,

regular or possessive, are never preceded by determiners. Deter-

miners are considered a closed class of words.

3.2.3 Verbs and Auxiliary Verbs

Verbs are usually tensed (past, present, future). They include both

verbs where the tensed forms are regular (see Figure 3.4) or

irregular (see Figure 3.5). Also, in some contexts, verbs can

appear untensed, such as after an auxiliary or after the word “to”.

Verbs are also marked for number (singular or plural), and for

person. First person is “I”; second person is “you”; and third

person is “he”, “she”, or “it”. The third-person singular form is

marked with “-s”; the non-3rd person singular present looks the

same as the root form. Verbs also have participle forms for past

(eg., “broken” or “thought”) and present (e.g., “thinking”).

Some verbs require a particle which is similar to a preposition

except that it forms an essential part of the meaning of the verb

that can be moved either before or after another argument, as in

“she took off her hat” or “she took her hat off”.

Verbs that can be main verbs are an open class. Verbs that are

modals or auxiliary verbs (also called helping verbs) are a closed

class. They are used along with a main verb to express abil-

ity (“can”, “could”), possibility (“may”, “might”), necessity (“shall”,
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“should”, “ought”), certainty (“do”, “did”), future (“will”, “would”),

past (“has”, “had”, “have”, “was”, “were”). NLP systems treat modals

and auxiliaries as a separate part of speech. They are also all

irregular in the forms that they take for different combinations

of features, such as past, plural, etc. For example, the modal “can”

uses the form “can” for any value for number and “could” for any

value for “past”.

Figure 3.4 Example of a regular verb and some suffixes

Example Regular Forms Suffix Features

walk walks; walked;
walking -s; -ed; -ing 3rd person singular, present;

past; participle

Figure 3.5 Some irregular verb forms

Example Irregular forms Features

break broke; broken past; past participle

eat ate; eaten past; past participle

sit sat; seated past; past participle

3.2.4 Prepositions

Prepositions, such as “with”, “of”, “for”, and “from” are words that

relate two nouns or a noun and a verb. Prepositions require

a noun phrase argument (to form a prepositional phrase). It is

estimated that there about 150 different prepositions (including

94 one-word prepositions and 56 complex prepositions, such as

“out of”)14. Prepositions are generally considered a closed class,

but the possibility of complex combinations suggests that algo-

rithms might be better off allowing for out of vocabulary exam-

ples.

3.2.5 Adjectives and Adverbs

Adjectives normally modify nouns, as in “the big red book”, but

may also be an argument of a verb (including forms of “be”, “feel”,
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“appear”, and “become”). Adjectives can also be marked as com-

parative (meaning “more than typical”, using the suffix “-er”) or

superlative (meaning “more than any others”, using the suffix “-

est”). Adverbs modify verbs, adjectives, or other adverbs. They

express manner or intensity. They may be comparative (e.g., “bet-

ter”) or superlative (e.g., “best”). Adverbs that end in the suffix “-

ly” have been derived from a related adjective (e.g., “quickly“ is

derived from “quick“).

3.2.6 Conjunctions

Conjunctions, such as “and”, “although”, “because”, “but”, “how-

ever”, “or”, “nor”, “so”, “unless”, “when”, “where”, “while”, etc. are

words that join words, phrases, clauses, or sentences. They can be

discontinuous, e.g,. “either … or”, “neither … nor”, “both … and”,

“not only … but also”, “on the one hand … on the other (hand)”,

“not just … but”, and “not only … but”. They can take modifiers,

such as “particularly”, as in Figure 3.6.

Figure 3.6 Example of a modified conjunction

These have been among the country’s leading imports, particularly last year when there
were shortages that led many traders to buy heavily and pay dearly. [wsj 1469]

There are three major types of conjunctions: coordinating con-

junctions, subordinating conjunctions, and correlative conjunc-

tions. A coordinating conjunction (e.g., “and”, “but”, “or”, and “so”)

joins two structures that have the same type. Their purpose is to

express that two entities did something together, or two events

happened at the same time. A subordinating conjunction (e.g.,

“after”, “although”, “because”, “before”, “if”, “how”, “however”,

“since”, “once”, “until”, “when”, “where”, “while”, “whenever”, “as

soon as”, “even if”, “no matter how”, etc) join a subordinate

(dependent) and a main (independent) clause. The main clause

can be understood on its own. The dependent clause can only

be fully understood in the context of the main clause, as its pur-

pose is to provide background, explanation, justification, or pos-

sible exceptions to what is said in the main clause. Thus, they
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express what is known as rhetorical structure or discourse relations

among clauses, which can occur either within the same sentence

or between adjacent sentences. When they link adjacent sen-

tences at the sentence level, these words function as adverbs, so

subordinating conjunctions are often labelled as adverbs, wher-

ever they occur, and some experts refer to them as conjunctive

adverbs. Sometimes subordinating conjunctions are labelled as

prepositions, as in the Penn Treebank II. Discourse relations can

exist without any explicit conjunction, but by using hand-anno-

tated data, such as the Penn Discourse Treebank or the Bio-

medical Discourse Relation Bank, they can be identified using

automated discourse parsing. A correlative conjunction is a dis-

continuous conjunction that joins words, phrases, or clauses that

have a complementary relationship. Because they are discontin-

uous, they are harder to learn, and so automated systems do not

always label them consistently. Figure 3.7 includes some sen-

tences illustrating different types of conjunctions and how they

are labelled using the default Stanford CoreNLP part-of-speech

tagger.
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Figure 3.7 Examples of conjunctions

Example sentences Type of expression with
labels given by CoreNLP

You can walk but you cannot run.
Coordinating
conjunction, labelled as
conjunction

You can read at home or in the library.
Coordinating
conjunction, labelled as
conjunction

My daughter and her friends like to climb.
Coordinating
conjunction, labelled as
conjunction

My cat purrs when you pet her.
Subordinating
conjunction, labelled as
adverb

If you study hard, you will do well.
Subordinating
conjunction, labelled as
preposition

You can either walk or take the bus.
Correlative conjunction,
labelled as adverb,
conjunction

The car not only is quiet but also handles well.
Correlative conjunction,
labelled adverb, adverb,
conjunction, adverb

Embryonic Stem cells have a high mitotic index and
form colonies. So, experiments can be completed rapidly
and easily.

Discourse adverbial,
labelled as adverb

Obese cats have higher levels of inflammatory
chemicals in their bloodstream. However, rapid shifts
in fat tissue further increase this inflammation.

Discourse adverbial,
labelled as adverb

3.2.8 Wh-Words

Wh-words that begin with the letters “wh-” like “who”, “what”,

“when”, “where”, “which”, “whose”, and “why” and their close

cousins “how”, “how much”, “how many”, etc. They are used for

posing questions and are thus sometimes called interrogatives.

Unlike the word types mentioned so far, they can be determiners,

adverbs, or pronouns (both regular and possessive), and so it is

typical to see them marked as a special subtype of each. Identi-

fying phrases that include wh-words is important, because they
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usually occur near the front in written text and fill an argument

role that has been left empty in its normal position, as in “Which

book did you like best?” In informal speech one might say “You

left your book where?” or “You said what?”, but the unusual syn-

tax also suggests a problem (like mishearing, shock, or criticism).

The semantics of the wh-expression specify what sort of answer

the speaker is expecting (e.g., a person, a description, a time, a

place, etc) and thus are essential to question-answering systems.

3.3 PART-OF-SPEECH TAGS

The general syntactic category of a word is also known as its

part of speech (POS) whereas “tag” refers to labels for specifying

the category and syntactic features (such as singular or plural).

Today, the use of “tag” is often synonymous with the labels given

in the Penn Treebank II (PT2) tagset15,16. There was no process

of agreement for adopting this tagset as a standard. Instead, a

group of linguistic experts, with resources to support the work,

developed them and disseminated them widely. Along the way,

refinements have been made so that human annotation is more

reliable and the sets of words in each category are not too sparse;

early versions had about 80 tags, while the current only has only

about 35. The tag set and associated guidelines for English have

been stable since 2015. (The word tags have been stable since

1999). Figure 3.8 includes the complete English tagset for words,

excluding punctuation.
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Figure 3.8 Penn Treebank tags for words (excluding punctuation)

Tag Description Example

CC conjunction, coordinating and, or, but

CD cardinal number five, three, 13%

DT determiner the, a, these

EX existential there there were six boys

FW foreign word mais

IN conjunction, subordinating or
preposition that, of, on, before, unless

JJ adjective nice, easy

JJR adjective, comparative nicer, easier

JJS adjective, superlative nicest, easiest

LS list item marker 1), 2), etc

MD verb, modal auxiliary may, should

NN noun, singular or mass tiger, chair, laughter

NNS noun, plural tigers, chairs, insects

NNP noun, proper singular Milwaukee, Rex, Claire

NNPS noun, proper plural I go out on Fridays, We go to the Smiths’

PDT predeterminer both his children

POS possessive ending ‘s

PRP pronoun, personal me, you, it, him, her

PRP$ pronoun, possessive my, your, our

RB adverb extremely, loudly, hard

RBR adverb, comparative better

RBS adverb, superlative best

RP adverb, particle about, off, up

SYM symbol %, #

TO infinitival to what to do, I want to sleep
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UH interjection oh, oops, gosh

VB verb, base form think, eat

VBZ verb, 3rd person singular
present

she thinks, she eats

VBP verb, non-3rd person singular
present

I think

VBD verb, past tense they thought

VBN verb, past participle a sunken ship

VBG verb, gerund or present
participle thinking is fun

WDT wh-determiner which, whatever, whichever

WP wh-pronoun, personal what, who, whom

WP$ wh-pronoun, possessive whose, whosever

WRB wh-adverb where, when

3.4 MULTI-WORD CONSTITUENTS

For each of the primary types of words, there is a corresponding

phrase type that includes the main word (called the “head”), along

with any modifiers (optional words or phrases that enhance the

meaning), or arguments (words or phrases that are required to

be present). These phrases can also be combined recursively to

form more complex phrases, clauses, or sentences. Below we

will overview the major types of phrases and some of the conven-

tions that define them. A complete discussion of English gram-

mar fills a book of over 1800 pages17. This complexity is one

reason that modern grammars are learned from large collections

of text, rather than written by hand.

3.4.1 Noun Phrases and Prepositional Phrases

Noun phrases are the most used type of phrase but also have

the most variation. Noun phrases can be simply a pronoun or

proper noun, or include a determiner, some premodifiers (such

as adjectives), the head noun, and some postmodifiers at the end.
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The determiner might be a single word or a complex expression

such as a complete noun phrase that includes a possessive marker

( “-‘s” or “-s’ “) at the end. Gerunds are noun phrases where a verb

that ends in “-ing” (tagged as VBG) acts as a head noun, as in the

sentence “Walking is good exercise”.

It is common to describe noun phrases as a combination of

a determiner and a nominal, where the nominal is an ordered

sequence of optional premodifiers, the head, and the postmod-

ifiers. The premodifiers can include a cardinal (such as “third”),

an ordinal (such as “three”), a quantifier (such as “all” or “most”),

other common nouns, an adjective, or an adjective phrase (such

as “very green and slimy”). English only permits three types of

postmodifiers: relative clauses (such as “the dog that found a bone”

or “the dog that I got at the humane society“), non-finite clauses

(such as “I had something to eat”), and prepositional phrases. Rel-

ative clauses following the head of a noun often begin with a rel-

ative pronoun, such as “that”, “which”, “who”, “whose”, “whom”,

or “whomever” and sometimes also “when” or “where”18. Some-

times these words can be omitted. So, instead of saying “The

meal that I ate was yummy” we might say “The meal I ate was

yummy”. When the relative pronoun is omitted, this is some-

times described as being a reduced relative clause. Also, the head

noun will always fill some syntactic role within the relative

clause (either a subject or object), so a grammatical relative clause

cannot also include a filler for this same role. So, one cannot

say “The meal that I ate the meal was yummy.”, as it overfills the

object role of “ate”.

Prepositional phrases comprise a preposition followed by a

noun phrase. Semantically, we use them to add locations, times,

or generic modifiers to a noun or to a sentence. They can follow a

head noun or verb in a noun phrase or verb phrase, respectively.

They can also modify an entire clause, where they typically occur

either at the very beginning or the very end.
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3.4.2 Verb Phrases

Verb phrases (VP) comprise a sequence of auxiliaries or modals,

a main verb, the arguments of the main verb, and optional prepo-

sitional phrases as modifiers. Adverbs can appear almost any-

where within the VP. The arguments of a verb will depend on the

verb, some take no arguments, some take one or two. An argu-

ment may also be restricted to be a particular syntactic struc-

ture such as a noun phrase or a clause, or it may be a semantic

requirement, such as being a description of a location. Linguists

have used case grammars19 or slot grammars20 to describe the

argument structures of verbs. For NLP several resources have

been created that are available as part of the Unified Verb

Index21. These resources include VerbNet, FrameNet and

OntoNotes. For example, VerbNet is the largest verb lexicon for

English. It groups together verbs with identical sets of syntac-

tic frames and semantic predicate structures and provides infor-

mation about those structures. Syntactic frames are sometimes

also called “thematic roles”. Figure 3.9 shows some of the syntac-

tic structures associated with “cut21.1”. OntoNotes is a corpus of

text that includes annotation of a wide variety of text (telephone

conversations, newswire, newsgroups, broadcast news, broad-

cast conversation, and weblogs) with syntax, argument structure,

and shallow semantics.
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Figure 3.9 Example of syntactic argument patterns for cut (sense cut21.1) from
VerbNet 3.3

Verb Pattern Example with syntactic frame

NP V NP

example “Carol cut the bread.”

frame Agent V Patient

NP V PP

example “Carol cut through the bread.”

frame Agent V {through|into} Patient

NP V NP ADJP

example “Carol cut the envelope open.”

frame Agent V Patient Result

NP V NP PP.instrument

example “Carol cut the bread with a knife.”

frame Agent V Patient {with} Instrument

3.4.3 Clauses and Sentences

Clauses and sentences are structures that include a verb with a

complete set of arguments. Sentences can either be statements

(declaratives), questions (interrogatives), or commands (impera-

tives). Questions can either be yes-no questions (constructed by

putting the auxiliary in front of the subject noun phrase) or wh-

questions which include a question word at the front (“who”,

“what”, “when”, “where”, “why”, “how”), and sometimes also an

auxiliary before the subject noun phrase. In wh-questions the

question word takes the place of some other constituent in the

sentence (either a subject or an object of a verb or preposition)

that is an unknown, such as the type of something. A passive sen-

tence is one where the semantic object appears as the syntac-

tic subject (the one before the VP) as in “The apple was eaten”.
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Some examples of different types of sentences are shown in Fig-

ure 3.10.

Figure 3.10 Example sentences and their types

Example sentence Sentence type

The cat sat. Statement

The cat chased a mouse. Statement

The mouse was chased Passive statement

The girl gave her cat a toy Statement

The cat slept in the bed. Statement

What did the cat do? Wh – question

What did the cat chase? Wh – question

Who gave the cat a toy? Wh – question

Who did she give the toy to? Wh – question

What did she give the cat? Wh – question

Where did the cat sleep? Wh – question

Did the cat catch the mouse? Yes – no question

Is it time to put the cat outside? Yes – no question

Wake up the cat. Command

Wash the bed when she is done sleeping. Command

Clauses in English include complete declarative sentences (com-

prising a subject main verb and its required objects), dependent

relative clauses introduced by a subordinating conjunction (e.g.,

“that”, “before”), interrogative sentences (i.e., questions) marked

by a wh-word or by inverting the subject and the main verb or a

modal, or a combination. When the wh-word at the front refers

to one of the objects of the main verb or a prepositional phrase,

then the normal position for that object will be empty in a gram-

matical sentence. Linguists refer to this phenomenon as move-

ment and the location of the missing object is a gap or trace. In

the treebank data this information is not tracked, except to note

that the sentence is a question introduced by a wh-word (i.e.,
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SBARQ). Lastly, adverbs, adjectives, and interjections can also

occur as sequences of several adjacent words. Figure 3.11 shows

some examples of these constructions and the category labels

that are used in the Penn Treebank, and thus have become the

standard for automatic processing as well.

Figure 3.11 Examples of some common Penn Treebank Constituent tags

Tag Description Examples

NP Noun phrase The strange bird in the tree
sang.

PP Prepositional phrase I walked in the park

VP Verb phrase I was looking around.

S Sentence, declarative The cat slept.

SQ Inverted yes/no question Did the cat sleep?

SBAR Relative clause
A cat that sleeps is happy. The
cat slept before she ate.

SBARQ Direct questions, introduced by a
wh-word Who slept on the floor?

SINV Inverted declarative sentence
(subject follows tensed verb or modal) Never has she been so happy.

ADVP Adverb phrase I am also very happy.

ADJP Adjective phrase The bed is warm and cozy.

QP Quantifier phrase She had no more than 100.

INTJ Interjection with several words Hello in there, I did not see you.

3.5 SUBCATEGORIZATION

Subcategorization is when one lexical category constrains the

categories of its arguments. So, a verb like “give” takes two NP

as internal arguments (the object and the recipient). Verbs also

often occur with an external argument, which would be its sub-

ject. All verbs constrain their arguments; but other words can

too, e.g., adjectives and nouns22. Figure 3.12 shows some exam-

ples of subcategorization. The pattern of subcategorization of a

word is sometimes referred to as its “subcategorization frame” or

just “frame”. An extensive collection of verbs and their expected
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arguments can be found in the Unified Verb Index.

Figure 3.12 Examples of subcategorization

Example Subcategorization

She was happy to get a puppy. “happy” requires a VP in the infinitive
form

The front of the bus was empty. “front” requires a PP that starts with
“of”

She said she wanted to be president. “said” requires a complete S (any form)

3.6 LEXICAL DEPENDENCY

An alternative to constituency for describing the legal sequences

of words, is to describe sequences in terms of binary syntactic

relations between a head word and an argument. These relations

are called lexical dependencies or just “dependencies”. These

dependencies include the categories of subject, direct object, and

indirect object, and categories for different types of modifiers.

Which of these arguments is required depends on the subcate-

gorization constraints of the head word. When both a direct and

an indirect object are required, the indirect object occurs first,

unless it is contained inside a prepositional phrase that begins

with “to”. Figure 3.13 shows examples where the main part of the

dependency is marked in bold and the dependent part is marked

in italics.
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Figure 3.13 Example dependency relations

Name Description Example

nsubj nominal subject The cat chased the
mouse.

dobj direct object
The cat chased the
mouse.

iobj indirect object The bird fed her babies a
worm.

iobj indirect object The bird fed a worm to
her babies.

pobj prepositional object The bird in the tree was
sleeping.

amod adjective modifier The happy bird sang.

Both constituency and dependency induce a tree structure over

legal sequences of words. The main difference between depen-

dency trees and constituency trees is that dependency trees store

words at every node, whereas in constituency trees only store

words in the leaves, and the nodes are marked with part-of-

speech tags. Figure 3.14 includes an example of the represen-

tation for the sentence, “The cat slept in her warm bed”. The

dependencies include that “cat” is the noun subject of the verb

“slept”, “bed” is a noun modifier of “slept”, “her” is a possessive

noun modifier of “bed”, and “warm” as an adjective modifier of

“bed”. (The relations “det” and “case” are the labels used for the

corresponding function words.)

Figure 3.14 Example dependency parse (Image from CoreNLP.run)

There are currently 37 universal syntactic relations defined by

the Universal Dependencies organization (See Figure 3.15).
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Figure 3.15 Universal Dependency Relations defined in UDv2

Universal dependency and description Universal dependency and
description

acl: clausal modifier of noun (adjectival
clause) fixed: fixed multiword expression

advcl: adverbial clause modifier flat: flat multiword expression

amod: adjectival modifier goeswith: goes with

appos: appositional modifier iobj: indirect object

aux: auxiliary list: list

case: case marking mark: marker

cc: coordinating conjunction nmod: nominal modifier

ccomp: clausal complement nsubj: nominal subject

clf: classifier nummod: numeric modifier

compound: compound obj: object

conj: conjunct obl: oblique nominal

cop: copula orphan: orphan

csubj: clausal subject parataxis: parataxis

dep: unspecified dependency punct: punctuation

det: determiner reparandum: overridden disfluency

discourse: discourse element root: root

dislocated: dislocated elements vocative: vocative

expl: expletive xcomp: open clausal complement

3.7 SUMMARY

The syntax of a natural language can be described in terms of:

• The types and features of words,

• The constituency of legal sequences of words, or

• Dependency relations that hold between pairs of words,

and
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• The subcategorization constraints that some words

impose on sequences of words.

At one time, all these aspects required coding from scratch using

manually created dictionaries and grammar rules. Today, large

annotated data sets exist that allow one to either extract most

vocabulary items and grammar rules or to train statistical lan-

guage models for automated processing. However, there are

types of text that are not well covered by such corpora, including

social media and text within proprietary data warehouses (e.g.,

user and repair manuals for devices). Some of this data is impor-

tant as it includes the notes of medical providers and records cre-

ated by marketing and service departments of enterprises. In this

chapter, we have discussed the basis for computational methods

of language analysis. In the next chapters, we will consider com-

putational descriptions of language syntax and processing mod-

els for identifying syntactic structure and meaning.
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CHAPTER 4.

GRAMMARS AND SYNTACTIC PROCESSING

If one wants to build systems that communicate with people in

human language or that analyze people’s beliefs and behavior it

is useful to perform a syntactic analysis of the text into either

phrase or dependency structures first. The correct structures

are specified using a grammar. Identifying the structure involves

a variety of steps, that can be performed independently, in a

sequence (which is known as a pipeline architecture) or can be

learned as part of a complete language model trained using Deep

Learning. Both NLP pipelines and Deep Learning models input

unstructured text, as a file or stream of characters, and output

either a single best analysis or a ranked set of alternatives. In

between, they may include steps that assign part of speech tags

to individual words, that group words into segments and provide

labels to sequences of tagged segments.

Figure 4.1 shows a modern natural language processing

pipeline. This pipeline is the one implemented in the NLP soft-

ware library spaCy.
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Figure 4.1 NLP pipeline implemented in spaCy (figure adapted from
https://course.spacy.io/chapter3)

The steps associated with syntactic processing include tokeniz-

ing documents into individual sentences and words (1), followed

by labelling words with syntactic categories (2), and identifying

the syntactic structure that spans sequences of words, which is

called parsing (3). These steps might be followed by a shallow

analysis of meaning, such as named entity recognition (4), senti-

ment (not shown), or by a deeper analysis of semantic relations

(not shown), which we will discuss in later chapters.

The pipeline processes of Figure 4.1 may be implemented as

either search or classification (the processing paradigms we dis-

cussed in Chapter 2). Search-based parsing requires a computer-

readable lexicon and grammar. The lexicon specifies the

vocabulary, while the grammar describes constraints on the lin-

ear order of words and the sequences that correspond to well-

formed constituents (phrases and clauses). Grammars and

lexicons can be provided in a formal language, to be processed

by a separate interpreter, or provided as functions in a pro-

gramming language, that can be executed directly. Classification-

based approaches require datasets annotated with the target

structure that can be used for training. Widely used datasets for

English include the Penn Treebank and OntoNotes for phrase-

based annotations and the English Web Treebank (en-EWT)1 for

dependencies. These datasets have been used to create pretrained

functions in software libraries such as NLTK, spaCy, Stanza, and

UDPipe.
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The remainder of this chapter will discuss pipeline processes

1 to 3 from Figure 4.1 (tokenization, tagging, and parsing).

4.1 TOKENIZATION

Tokenization divides a string into substrings and returns a set

of tokens that represent the individual substrings. Simple tok-

enizers spit strings at whitespace (typically tabs and spaces) and

create separate substrings for each punctuation symbol. More

complex versions also find the root form (lemma) for each word,

as shown in Figure 4.2, which shows how the tokenizer of Stan-

ford’s CoreNLP system would split the string “I sold my book for

$80.00.”

Figure 4.2 The tokenization of “I sold my book for $80.00.”. (Image by Stanford
CoreNLP.run (2020)

NLP software libraries include predefined tokenizers and mech-

anisms for defining new ones. Figure 4.3 shows how tokeniza-

tion can be called from NLTK and SpaCy in just a few lines of

code. (The example is for processing the phrase “My pet cat.”)

In some programming languages (e.g., Python) tokenizers can be

implemented from scratch using built-in functions for splitting

strings and regular expressions to find punctuation symbols or

other characters, like “$”, in the spans between whitespace. More

sophisticated tokenizers also create separate tokens for parts of a

contraction (e.g., don’t is tokenized as {“do”, “not”}). Another sys-

tem, the Wordpiece tokenizer (used by the BERT to create word

vector representations23), splits unknown (out of vocabulary)

words into substrings; for example “kindle” is split into [‘kind’,

‘##le’] and “recourse” is split into [‘rec’, ‘##ours’, ‘##e’]. The most

sophisticated tokenizers (such as nltk.tokenize.punkt) have been

trained on annotated data, such as the Penn Treebank, to iden-
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tify strings that correspond to abbreviations, words that are at

the start of a sentence (and hence can be safely changed to lower

case), and collocations (or multiword expressions). Depending on

the implementation, the result of tokenization may be just a list

of strings or a list of objects with features set to capture the syn-

tactic features and the canonical or dictionary form of the word

(lemma) for spans that corresponds to words in a known vocab-

ulary.

Figure 4.3 Code for performing tokenization and part-of-speech tagging in NLTK
and spaCy

Tagging in NLTK

import nltk
from nltk.tokenize import word_tokenize
from nltk.tag import pos_tag def preprocess(sent):
sent = nltk.word_tokenize(sent)
sent = nltk.pos_tag(sent)
return sent s= preprocess('My pet cat.') print(s[0])

Tagging in spaCy

import spacy nlp = spacy.load("en_core_web_sm")
text = "My pet cat." #Tokenize, tag, NER, and parse
doc = nlp(text) #word and its tag
print(doc[0].text, doc[0].pos_)

4.2 PART-OF-SPEECH TAGGING

Part-of-speech tagging takes a tokenized text and provides syn-

tactic label for each token. Today, tags refers to either labels from

the Penn Treebank II tagset (which is what NLTK uses) or tags

from the Universal Dependencies tagset (which is what spaCy

uses)4. Implementations of tagging use either hand-crafted

rules, statistical modelling, or language modelling implemented

with neural networks. Because part-of-speech tagging is such a

common NLP task, prebuilt functions for tagging exist in major

NLP software libraries, and can either be called individually (as

in NLTK) or will be invoked as part of the standard NLP pro-

cessing pipeline (as in spaCy). Figure 4.3 (in Section 4.1), shows
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example code for invoking the tagger within these two libraries,

after sentences are tokenized.

The earliest successful taggers were rule-based or combined

a rule-based approach with simple statistical modelling. Statis-

tical taggers were first introduced by Marshall in 19835, but

were not very accurate until larger and better datasets, such

as the Penn Treebank, became available, so that more advanced

modelling was feasible. The most successful taggers combine a

wide range of information including the possible syntactic cat-

egories of nearby words, the overall probability associated with

words being used a particular way (e.g., “eats” can be a noun or a

verb, but it is more typically a verb), the probability of suffixes

and prefixes being associated with different parts of speech (e.g.,

words that end in “-ly” are usually adverbs), and the capitaliza-

tion of a word (e.g., words that begin with a capital letter are usu-

ally proper nouns). Rules for tagging can capture these known

linguistic generalizations.

The simplest statistical models just use the most frequent cat-

egory for each word. Sequence-based modelling (a type of

sequence classification) involves finding the best sequence of tags

for an entire sentence (rather than just a single word). These

approaches can combine information about the most common

category of a single word with those of nearby words, which is

the approach taken by Hidden Markov Models. More advanced

approaches, such as Maximum Entropy Markov Models (used

by the Stanford CoreNLP tagger) and Averaged Perceptrons (a

neural approach used in NLTK), consider the frequency of sub-

sequences, as well as the other linguistic features, but adjust their

impact by measuring the association between each feature and

tag in a training corpus. Thus, sequence classification requires

a data set of sentences where each word has been correctly

tagged. Also, the corpus must be large enough so that the algo-

rithm can find enough examples within the training corpus for

the estimates to be meaningful. A third factor in the success of

taggers trained from data is the similarity between the genre
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used for training and the genre of the target. Treebanks exist

for newspaper text, as part of the Penn Treebank, and a variety

of Web texts, such as blogs, as part of the English Web Tree

Bank (a treebank created from Twitter posts as part of the CMU

TweetNLP corpus), and a treebank created from GENIA, a col-

lection of abstracts from the medical literature (which can be

obtained from the Stanford NLP group6).

In sections that follow, we will consider rule-based, statistical,

and neural approaches to tagging.

4.2.1 Rule-based tagging

A basic rule-based part-of-speech tagger can be created by using

regular expressions to specify a list of patterns and their corre-

sponding tag. Figure 4.4 contains an example set of patterns suit-

able for working with the regular expression tagger of NLTK.

It would provide PTB tags similar to what you might see if you

tagged a sentence like “I wanted to find 12.5 percent of the oldest

words.” This approach can work for small domains, but requires

effort and expertise to create a broad set of rules and will some-

times err on words that have more than one part of speech (such

as “her”, which can be either a personal pronoun, when used as

an object, as in “given to her”, or a possessive pronoun, as in “her

cat”).
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Figure 4.4 Example of a tagger created using regular expressions in NLTK

>>> regexp_tagger = RegexpTagger(
... [(r'^-?[0-9]+(.[0-9]+)?$', 'CD'),
... (r'(The|the|A|a|An|an)', 'DT'),
... (r'(I|We|we|You|you|They|them)', 'PRP'),
... (r'(I|He|he|Him|him|She|she|Her|her|It|it)', 'PRP'),
... (r'to', 'TO'),
... (r'.*able$', 'JJ'),
... (r'.*est$', 'JJS'),
... (r'.*ness$', 'NN'),
... (r'.*ly$', 'RB'),
... (r'.*s$', 'NNS'),
... (r'.*ing$', 'VBG'),
... (r'.*ed$', 'VBD'),
... (r'.*', 'NN')
... ])

The most successful rule-based POS tagger was created as part

of a Constraint Grammar Parser for English (ENGCG). Its accu-

racy has been consistently reported as 99.7%, which is better than

comparable purely statistical approaches, but does not use either

of the most the widely accepted tagsets (e.g., the Penn Treebank

or Universal Dependencies)7. (It would also be difficult to update

to handle corpora, such as weblogs and social media.) This rule-

based tagger used an approach based on an AI problem solv-

ing technique known as constraint satisfaction. This is a type

of search that tries to find an assignment of values to variables

such that bindings to variables satisfy any constraints that men-

tion those variables, which can be performed either as depth-

first search or as optimization (gradient descent). At each step

of the search, remaining values are compared to the constraints

and values that conflict are removed from consideration. The

tagging algorithm uses a large hand-crafted dictionary, ENGT-

WOL, that includes a list of all possible part-of-speech categories

for each word and a set of rules that specify various constraints

between the category labels for different words in the same sen-
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tence. ENGTWOL had about 1100 rules that were based on their

syntactic grammar and another 200 or so that were just “heuris-

tic”. The number of rules was so large because the dictionary

used 139 different tags for words (whereas modern tagsets have

only 36 tags for words).

The ENGCG algorithm starts by retrieving all possible tags for

each word and then applies the constraints that match, eliminat-

ing tags that violate constraints until each word has a unique tag.

An example of a constraint is “A past participle cannot immedi-

ately follow a pronoun at the start of a sentence.” (This is true

because, in the grammar, a past participle requires a preced-

ing auxiliary verb.) A more complex example of a constraint is

shown in Figure 4.5. Note that, in the rule shown, “1” means the

next word, “2” means the second word to the right of the current

word. This rule expresses the constraints associated with select-

ing the adverbial (ADV) sense of “that” which is a synonym for

“very” (as in the sentence “I wasn’t that drunk.” which is a sen-

tence that is not tagged correctly by the default taggers within

either NLTK or spaCy, which have been trained on data that

likely never saw an example of this construction).

Figure 4.5 ENGTWOL/ENGCG tagging rule for “that” as ADV

Later versions of the analyzer added information from the

XEROX statistical tagger (XT) to remove ambiguities that

remained after the applicable rules were applied, eventually

reaching an accuracy of over 99.7% compared to the rate of 97%

for XT alone. This approach worked better than either using the

statistical tagger alone, or using the statistical tagger first. When
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the errors were reviewed, it was revealed that the hand-writ-

ten rules tended to solve all but the “hardest” cases of ambigu-

ity, while the statistical model made about 80% of its errors on

“easy” cases, but sometimes did better on cases that people think

would be “hard”, but were correctly tagged in its training data.

(Statistical tagging only got better than rule-based tagging when

enough high-quality annotated data was available, e.g., after the

competion of the Penn Treebank.)

4.2.2 Brill Tagger

The Brill Tagger, first described in 1993, uses a hybrid of a rule-

based and a statistical approach, which can be useful when there

is only a limited amount of training data. In this tagger, a simple

statistical model is used first and then rules are used to correct

specific types of errors observed by experts. Correction rules

can be hand-crafted, or learned from an annotated corpus. The

algorithm begins by selecting the most frequent category for the

word, based on the training data. This is known as a “unigram”

model, because it only looks at one word at a time. The rules test

for specific suffixes of a word, the surrounding words, and the

categories of surrounding words and suggests replacement tags.

For example, there is a specific rule for an error in tagging the

word “while” in sentences like “She/PRP was/VBD gone/VBN

for/IN a/DT while/IN” that occur because “while” is most often

a preposition (IN), but in context should be a common noun

(NN).

Hybrid tagging addresses the insight that statistical taggers do

not always resolve ambiguity correctly, however their errors are

generally understandable enough (by experts) to correct by hand

using a fixed set of rules. Even when statistical taggers con-

sider more context, and are trained over more data, there will be

examples that have not been seen or may not be resolvable with-

out reference to common sense knowledge8. A Brill-style tagger,

if trained on suitable data, can address the errors seen for a tar-

get domain task. A trained instance of Brill’s tagger also requires
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relatively little space, as it only creates a unigram model. Imple-

mentations for versions of the Brill tagger and software for using

a corpus to learn rules can be found in the NLTK software library

(e.g., nltk.tag.brill and nltk.tag.brill_trainer).

4.2.3 Statistical Classification-Based Tagging

Today, the most accurate POS taggers use sequence classifica-

tion. The earliest examples used straightforward statistical mod-

elling; more recent ones create models by training neural

networks, which allow them to discover novel statistical rela-

tionships. The general idea of a sequence-based classifier is to

find the ordered list of tags that maximizes the estimated prob-

ability of being the correct sequence of tags. This generally

involves enumerating and scoring all possible combinations,

while keeping track of the best one. Efficiencies can be made by

pursuing a greedy strategy that prunes all but the best choice

for each word as it moves across a sentence from left to right.

Implementations exist that use different statistical models (e.g.,

Hidden Markov Models, Maximum-Entropy Markov Models,

and Conditional Random Fields), which can be implemented by

dynamic programming (e.g., the Viterbi algorithm9). The newest

approaches use various types of neural networks. We will start

by discussing the general idea behind sequence classification.

Later in Section 4.3.5 we will overview some neural network

approaches.

The general idea behind most statistical approaches to lan-

guage modelling is a two-step process. The first step involves

counting the frequency of words and tags within a suitable cor-

pus for subsequences of the original sequence. The second step

involves calculating several types of estimated probabilities for

each word-tag pair and then selecting the best combination of

pairs for the entire sentence. We estimate probabilities when

there is no way to get a true probability. The estimates are rel-

atively easy to do by counting. For example, the probability of a

single word having a tag can be estimated as the simple propor-
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tion of times the word occurs with the tag and to build a bigram

model, which is a bit more accurate, we look at words two at a

time. To do this we traverse a corpus tagged with part of speech

to count and store three things: 1) The number of times that each

word occurs with each tag (i.e., C(wi, tj) ); 2) the total number of

times that each tag occurs (i.e., C(t)); and 3) the number of times

that each pair of tags occurs (i.e., C(ti,ti+1)). Figure 4.6 shows

how these counts are used to estimate probabilities, where the

real probabilities are on the left, along with the expression used

to estimate the value on the right. In line a, we estimate the lexi-

cal generation probability because the expression we really want

to use (P(t|w)) can be simplified by first using Bayes Rule and then

ignoring the P(w) term, since it will be the same for all tags we

are considering. In line b, to estimate the probability that tag ti

follows tag ti-1, we count the number of occurrences of (ti-1, ti ),

divided by the total number of occurrences of ti-1. In line d, we

justify combining the estimates for the different parts of the joint

probability using simple multiplication by making an assump-

tion that the events can be treated as independent (even though

in real life they are not). This is called a Markov Assumption. For

real data, where the proportions of counts are very small, we

convert the expression in line d to log scale and use addition

instead of multiplication to combine the terms. (This conversion

is both more efficient and avoids rounding errors.)
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Figure 4.6 Estimated probabilities used in a bigram model for part of speech
tagging

Probability value Counting-based estimate

a) P(w| t), “the lexical generation
probability”

C(t,w) ÷ C(t)

b) P(ti| ti-1), “the probability a tag follows
a given one” C(ti-1,ti) ÷ C(ti-1)

c) P(ti| ti+1), “the probability a tag
precedes a given one” C(ti,ti+1) ÷ C(ti+1)

d) P(ti| wi, ti-1, ti+1), probability of a tag for
a word

(C(ti-1,ti)÷C(ti-1)) * (C(ti,ti+1)÷C(ti+1)) *
(C(ti,wi)÷C(ti))
– that is, take the product of the three
estimates

This idea can be extended to longer sequences such as trigrams,

or in general ngrams. There is a practical tradeoff between the

length of the subsequences used to model a sentence and the

number of instances available to train the model. A bigram-based

tagger only uses the category of the one immediately preceding

word to predict the current one; a trigram-based tagger will use

the categories of the two previous words to predict the third.

Thus a bigram model will likely include more examples of any

given pair. A dataset might have very few of all but the most com-

mon triples. When there are insufficient examples of sequences,

tagging algorithms can use a backoff strategy, where it applies a

sequence of different tagging functions in a fixed order, so that

if it does not have enough data to count sequences of length

three it will “back off” and use sequences of length two, and so

on, or it might default to a rule-based tagger. Another way of

avoiding zeros in the calculations for estimated probability is

to use a technique called smoothing. Smoothing techniques add

very small quantities to the numerator and denominator, just big

enough to prevent a zero, without affecting the overall order-

ing. Examples of smoothing techniques include Laplace smooth-

ing, which adds one to the counts in both the numerator and

the denominator and Good-Turing smoothing, which estimates

the probability of examples missing in the training corpus by
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the estimated probability of examples that occur once10. One

can also build a more complex, and potentially more accurate

model, using Conditional Random Fields (CRF). CRFs do not

require that one assume independence and also provide a cer-

tainty value for different possible sequences. Maximum Entropy

Markov Models (MEMM), such as the Stanford CoreNLP tagger,

and CRF models do not assume independence so they allow one

to use ad hoc features, including suffixes and capitalization, but

as a result, they are much slower, and rarely used for relatively

simple tasks, such as part-of-speech tagging.

4.2.4 Sequence Classification-Based Tagging with Neural Networks

Statistical taggers are not completely accurate and require a large

amount of space to build tables, which can range into the hun-

dreds of millions of entries, in addition to the time they need

to compute and compare the estimated probability values. Thus,

there has been an interest in alternative methods using neural

networks, which compare quite favorably for both accuracy and

efficiency, especially for domains which are less standard than

newspaper texts, such as micro-blogs11. The simplest neural

approach uses an Averaged Perceptron, which is a single-layer

network (discussed in Chapter 2) that is both accurate and effi-

cient. An implementation of an Averaged Perceptron based tag-

ger became the default tagger for NLTK 3.1 starting in 2017.

In that implementation, (originally created by Matthew Hannibal

for Textblob12), thirteen input features were used, capturing

things like the suffixes on the current word and the two preced-

ing words, and the tags on the preceding words (both separately

and as a bigram).

The most recent neural network-based implementations use

variants of a Deep Learning Architecture, which learn their fea-

tures rather than depending on experts to select them, making

them more adaptable to new domains. This aspect is especially

helpful for domains, like microblogs and other types of social

media, where nonstandard spelling and out-of-vocabulary words
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are common. Figure 4.7 shows an example from Twitter and the

corresponding tags. (In the figure, UH is the tag for “interjection”,

USR is a new tag for “user name”).

Figure 4.7 Example of Twitter text and tags from Gui et al 2017

Untagged
sequence

@DORSEY33 lol aw i thought u was talkin bout another time . nd i dnt
see u either !

Tags as
labelled
in Gui et
al 2017.

USR UH UH PRP VBD PRP VBD VBG IN DT NN . CC PRP VBP VB
PRP RB

Deep neural network architectures can address nonstandard

spellings by using an input representation that maps the word

sequence onto vectors or matrices that combine dense word-

level representations to capture the general meaning of a word

(i.e., a word embedding) with a dense character-level represen-

tation of each word (i.e., a character embedding), created using

another, previously trained neural network13. The number of

dimensions for these embeddings can be relatively small (e.g., 32

for the word embeddings and 2 for the character embeddings),

compared to the overall size of a vocabulary, which might span

hundreds of thousands of words. This combined input structure

is then passed to layers that account for sequences (such as a bidi-

rectional Long Short Term Memory layer or a Gate Recurrent

Unit layer), followed by some additional layers (e.g., feed-forward

or fully-connected) to select the best tags. Figure 4.8 is an illus-

tration of this sort of architecture14.

Figure 4.8 Example neural network architecture for part of speech tagging (Image
from Meftah and Semmar (2018)
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An emerging approach that has been proposed for dealing with

novel domains is to combine the input with embeddings trained

from a domain that is large and more conventional to enrich

information from the smaller target domain, an approach known

as transfer learning, which has been applied to Twitter text15.

The tradeoff for these newer models is in the time needed for

training. Thus a reasonable approach might start with a pre-

trained tagger and then address errors with some domain-spe-

cific correction rules, if necessary. (One can also provide

synthetic training data, meant to teach the model how to handle

the erroneous cases.) We will now move to the next stage of syn-

tactic processing which is to identify the syntactic structure over

entire sequences of words.

4.2.5 Summary of Part of Speech Tagging

We have just overviewed the four main approaches to word-

level tagging: rule-based, hybrid, statistical and heural network

based approaches. The task is to which assign to each word a part

of speech tag, now generally from the Penn Treebank II tagset,

although early approaches, like ENGTWOL used other tagsets.

Tagging can be performed separately or included as part of a

pipeline.

Now we will consider how structures above the level of an

individual word are described and identified computationally.

4.3 GRAMMARS

The assignment of an appropriate syntactic structure to a

sequence of words depends on their being some pre-existing

notion of what is the correct structure. In NLP syntactic cor-

rectness is specified by a grammar. Grammars describe the linear

order in which words can occur and, ideally, do so in a way

that is generalizable. There are sequences of words that cor-

respond to well-formed constituents and thus longer structures

can be specified recursively in terms of these constituents. For

NLP work, two general types of grammars are most commonly
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used, context free grammars (CFG) and dependency grammars.

CFGs are used to specify grammars in terms of linguistic cate-

gories such as NP and VP are thus are also called “phrase struc-

ture grammars” or “constituency grammars”. In a dependency

grammar, syntactic structure consists of binary asymmetrical

relations (the dependency relations) that hold between words.

Information about possible relations is given by the lexical entry

for each word, as part of the lexicon that defines the vocabulary

of the language. One of the earliest examples was McCord’s Slot

Grammar16. Figure 4.9 shows the lexical entry associated with

the word “given” in a McCord’s lexicon. The entry says that given

is a past participle and has three relations: subject (subj), direct

object (obj), and indirect object (iobj). Formally, a lexical entry

can also be given as a combination of the word and a pair of finite

state automata that define what relations exist to the right and to

the left of the word, respectively 17.

Figure 4.9 Lexical entry for “given” in the Slot Grammar lexicon of McCord (1990)

wframe (3, s (give, i), verb(pastpar ta),
slot (subj (n) ,op,X).
slot (obj ,op,Y).
slot (iobj, op,g) .nil).

Parsing is the computational process of determining the correct

structure for a given sequence of words, given the specification

provided by the grammar. Parsing can use search or classifi-

cation. A search-based parser traverses either the words of the

sentence or the rules of the grammar to find a match between

subsequences of the words and the rules of a grammar. Gram-

mars for language tend to overgeneralize, resulting in thousands

of possible parses, so the best approaches rely on mechanisms for

ranking and pruning, so that only the most likely structures are

considered. Like machine learning-based approaches, the algo-

rithms for determining the most likely structures make use of

information from a dataset of previously parsed sentences to

estimate probabilities.

A classification-based parser takes a model that has been
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learned from sentences previously annotated with the correct

parse in the target format and applies it to an unparsed sentence

to determine which of its previously seen structures (or equiv-

alently, previously seen sequences of parser actions) is best

according to that model. The coverage and accuracy of a classifi-

cation-based parser thus depends on a combination of the qual-

ity of the training set and the sensitivity and specificity of the

modelling algorithm.

4.3.1 Context Free Grammars

Context Free Grammars (CFGs) are a formalism for describing

both the syntactic structure of human language and of program-

ming languages. The formalism was developed in the 1950’s and

applied to describe natural language syntax by Noam Chom-

sky18. A CFG consists of a set of re-write rules, A -> B1 B2 …

Bn, where symbols that appear on the left-hand side (LHS) are

called “nonterminals” and the symbols on the right-hand side

(RHS) can be either nonterminals or terminals. The terminal

symbols are those that do not appear on the left-hand side of any

rule, because they are “atomic” for the language in question. In

a grammar for a human language the terminals are the words

and the nonterminals are phrase categories such as NP, VP, and

S. Every CFG also has a distinguished “root” nonterminal that

can serve as a starting place for a top-down search or an ending

place for a bottom-up search. CFGs can have any number of

symbols on the RHS, but the most efficient algorithms for pars-

ing CFGs require that the rules all be binary (i.e., have exactly

two symbols on the RHS. A nonterminal can have more than one

RHS, in which case they are defined as separate rules, although

parsers also allow an abbreviated notation, where the different

RHS are listed together, separated by a vertical bar.

Parse trees are a way of depicting the derivation of a sequence

according to the grammar. In trees, the root nodes are the non-

terminals of the grammar, the leaf nodes are the words. Figure
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4.10 shows an example of a parse tree for a phrase structure

analysis of the sentence “The dog ate the beef”.

Figure 4.10 Parse tree for the sentence “The dog ate the beef.” (parse and image
from Stanford CoreNLP.run 2020)

A CFG can be defined explicitly, after a qualitative analysis of a

language (such as described in Chapter 3), or it can be induced

from a dataset where sentences have been previously annotated

with their correct parse, i.e., a treebank. To induce a grammar, a

computer algorithm can traverse all the trees starting from the

root and for each subtree that has children, create a rule where

the root of the subtree is the LHS nonterminal and its children

form the RHS. Figure 4.11 shows the rules that might be learned

from a parse of the sentence “The dog barked.” If the parse trees

in the data set had more than two branches, but a binary branch-

ing grammar is desired, then the induced rules can be rewritten

using additional nonterminals to create binary trees. For exam-

ple, the rule NP-> DT NN CC NN PP, can be rewritten as NP

-> DT N1 and N1-> N1 PP | N1 CC N1, where N1 is a new non-

terminal. Terminals are just the words, which can be collected

directly from the unannotated text or from the treebank.
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Figure 4.11 Example CFG learned from parse of “The dog barked”. (parse and
image from Stanford CoreNL

Parse tree Induced rules

S →NP VP
NP→DT NN
VP →VBD
DT→the
NN→dog
VBD→barked

4.3.2 Probabilistic Context Free Grammars

Probabilistic Context Free Grammars (PCFG) are a variant of

context free grammars where each rule is annotated with a

numerical value that expresses the likelihood that the rule will

be used when rewriting the terminal on the left-hand side. The

numbers follow the conventions of a probabilities where the sum

of the values for the same nonterminal must equal 1. Figure 4.12

shows an example of a small PCFG.

Figure 4.12 Example of a PCFG created by hand

Grammar Probability Lexicon Probability

S → NP VP 1.0 NN → talk 0.6

NP → DT NN .4 NN → money 0.4

NP → NN .2 NNS → talks 1.0

NP → PRP$ NN .3 PRP$ → my 0.4

NP → PRP$ NN NNS .1 PRP$ → your 0.6

VP → VBZ .6 RB → loudly 1.0

VP → VBZ RB .4 VBZ → talks 1.0

PCFGs can be created by hand, as in Figure 4.12 but in practice
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they are usually induced from annotated collections of brack-

eted sentences or a treebank. Bracketed sentences (also called

shallow parses) include only the top-level phrase categories, and

are used when full trees are not available or needed. Figure 4.13

shows some sample bracketed data that might be used to induce

a PCFG.

Figure 4.13 Example of patterns that might be used to estimate a PCFG

Pattern Type Count

[S [NP] [VP]] 300

[S [VB] [NP]] 100

[S [S [NP] [VP]] [CC] [S [NP][VP]]] 200

For the example in Figure 4.13, we must also consider the phrase

types within a pattern. So in Figure 4.13 there are 700 examples

of “S →NP VP“ (including 400 that appear nested within the

third type of pattern). There are 100 examples of “S → VB NP”

and 200 examples of “S → S CC S“, resulting in a probability of

assignment for the PCFG sentence rule of S→ NP VP [0.7] | VB

NP [0.1] | S CC S [0.2].

Simple PCFGs provide a way to resolve local syntactic ambi-

guity, but they are not always very accurate, because many ambi-

guities depend on relationships between specific words, as in

“They ate udon with forks.” versus “They ate udon with chicken.”

Often accuracy can be improved by conditioning the probabili-

ties by the word that is the head of the constituent (such as the

main verb in a verb phrase or the main noun in a noun phrase).

Figure 4.13 gives an example rule by Collins19 that might be used

for finding the head of a noun phrase.
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Figure 4.13 Collins rule for finding the head of a NP

If the rule contains NN, NNS, or NNP:
Choose the rightmost NN, NNS, or NNP

Else If the rule contains an NP:
Choose the leftmost NP

Else If the rule contains a JJ:
Choose the rightmost JJ

Else If the rule contains a CD:
Choose the rightmost CD
Else Choose the rightmost child

Collins used rules like this to define a lexicalized context free

grammar (LCFG), which includes the head words for each

phrase. Figure 4.14 shows an example of a lexicalized CFG

(shown without estimated probabilities).

Figure: 4.14 Example of a lexicalized grammar from Collins

Another way to improve PCFG grammars is to combine the syn-

tactic categories of a PCFG with a neural network that learns

vector representations that combine syntactic and semantic

information. This approach, called a Compositional Vector

Grammar (CVG)20, uses a neural network to learn weights for

each nonterminal. The CVG captures the notion of head words

that are needed for ambiguities that require semantic informa-

tion, such as PP attachments, and also addresses the problem of

sparsity, because it generalizes over similar words (e.g., words

that had similar neighbors) in the training data.
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4.3.3 Dependency Grammars

Dependencies are asymmetric binary relations that express the

functional role of the word with respect to another word that is

considered the head of the relation. These relations form head-

dependent pairs. Researchers have refined and standardized the

types of dependency relations, following the work on creating

lexicalized context free grammar rules. There are three general

types of relations: relations that specify modifiers, relations that

specify complements (required arguments), and relations which

essentially name the type of word itself, such as determiners,

conjuncts, and copula. The most standardized set of dependency

relations and their definitions is maintained by the Universal

Dependency organization. Figure 4.15 shows an example depen-

dency tree, which groups all the dependencies originating at the

same word together at a single node. Note that unlike a con-

stituency tree, the words are root nodes and the dependencies

are labels on the edges between them.

Figure 4.15 Example of a dependency tree for “Bills on ports and immigration were
submitted by Senator Brownback.” (Image: Stanford CoreNLP)

The specifications of dependency grammars can be specified by

hand, in the lexicon, as in the original slot grammars described

above, or they may be induced from treebanks. It has been shown

that dependency grammars and context free grammars are

equivalent in expressiveness, and dependency grammars can be

learned from either treebanks based on constituency (such as

the Penn Treebank) or tree banks created using dependency

parsers. Using a treebank, dependency grammars and parsers

can be augmented with estimated probabilities (in a manner sim-

ilar to PCFGs), including creating rules that are conditioned on

the specific head-dependent pairs.

In the next sections, we will consider parsing algorithms for
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both constituency and dependency grammars, considering both

search and classification-based approaches to parsing.

4.4 SEARCH-BASED PARSING

The most widely used search-based algorithms for parsing are

the CKY algorithm (named for its creators: Cocke, Kasami, and

Yonger), and the Shift-Reduce Algorithm. Both CKY and Shift-

Reduce are “bottom-up” algorithms, which means they begin the

parse with individual words, and work their way “up” towards a

structure that spans the entire sentence. (Bottom up algorithms

are also useful for traversing a parse tree, for example to compute

a semantic representation in a compositional way.) CKY is rel-

atively efficient (for a bottom up algorithm), because it can be

implemented as dynamic programming using a matrix to keep

track of partial results. An example of a CKY algorithm, is bot-

tom-up chart parsing, which can also make use of rules anno-

tated with probabilities or semantics. It is also used in some

neural neural network approaches to build the final result.

Because bottom-up chart parsing has so many applications, we

will be doing an in-depth dive into the algorithm.

4.4.1 CHART PARSING

Chart parsers create structures, called edges, to represent both

complete constituents and partially complete constituents (of a

sentence). The partially complete structures allow them to make

predictions about what will be processed next and to use those

predictions to guide the parse. Each edge stores the grammar

rule that is being used and locations where it begins and ends. By

convention, locations begin at 0 (zero) just before the first word,

and end just after the last word of the constituent. Figure 4.16

is an example of a sentence, marked with locations, showing all

possible spans for the sentence “The cat ate a mouse”, listing all

spans of length 1, all of length 2, etc. We use the notation [i:j] to

describe the span of words from location i to location j and [k:k]
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to describe the point just before processing the word that begins

at location k. For example, in Figure 4.16, [0:2] corresponds to

“the cat” and [2:2] is the location before “ate”. Chart parsers can

be used both for parsing context free grammars, and for depen-

dency parsing. For clarity, we will consider chart parsing only

using a simple CFG. (We will consider parsing with dependen-

cies when we discuss transition-based dependency parsing in the

next section.)

Figure 4.16 Example of the locations of some individual words and spans of words

0 1 2 3 4 5

Spans of
length 1 The cat ate a mouse

Spans of
length 2 The cat a mouse

Spans of
length 3 ate a mouse

Spans of
length 5 The cat ate a mouse

Chart parsing is an exhaustive enumeration of all edges induced

by a grammar—any and all grammar rules that can match will

result in an edge being added to the chart. The more ambiguity

a grammar allows, the more edges will be created. Figure 4.17

shows the edges we would get if we used a context free grammar

along with all the parts of speech for each word as found in a typ-

ical dictionary, using the tags of the Penn Treebank tagset (e.g.,

JJ is “adjective” and RB is “adverb”). Here, the word “the” has two

parts of speech (DT, IN, RB), “horse” has four (NN, JJ, VB, and

VBP), “raced” has two (VBD, VBN), “past” has four (NN, IN, JJ,

and RB), “barn” has one, and “fell” has three (NN, JJ, VBD)21. To

the left, the figure shows all the edges of length 1 that could be

created by matching rules from the bottom up.
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Figure 4.17 Edges of length 1 for a bottom-up parse with ambiguity

Sentence:
0 The 1 horse 2 raced 3 past 4 the 5 barn 6 fell. 7

Grammar Edges of length 1

DT -> the [([0:1], DT), ([0:1], IN), ([0:1], RB]),

NN -> horse | past | barn | fell
([1:2], JJ), ([1:2], NN), ([1:2], VB), ([1:2], VBP),([2:3], VBD),([2:3],
VBN) ,

IN -> past | the
([3:4], JJ), ([3:4], IN), ([3:4], NN), ([3:4], RB), ([4:5], DT), ([4:5], IN),
([4:5], RB),

JJ -> past | fell | horse ([5:6], NN),

RB -> the | past ([6:7], VBD), ([6:7], NN), ([6:7], JJ)]

VB -> horse

VBD -> raced | fell

VBN -> raced

VBP -> horse

The edges that are created to keep track of the state of a parse

before a rule is completely matched are called “active edges”. As

the sentence is processed from left to right, for each partially

matched grammar rule, the algorithm will create an active edge

to store what has been matched, and what is still needed. A dot

(*) is used to designate the dividing point between what has been

matched and what is still needed. (If an edge is created with

no parts matched, then the dot will be immediately after the

arrow, as in A→ * B1 B2.) As more parts are matched, new edges

are added, with the dot moved over to the right. When the dot

reaches the far right end of a rule, then the edge is “complete”

(also called “inactive”) and it can be used to extend other active

rules. Figure 4.18 shows another small grammar and some edges

that would be created, midway through the parse.
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Figure 4.18 Example of edges created after parsing the first two words of “the cat
sat”.

Sentence:
0 The 1 cat 2 sat 3

Grammar Edges for “the cat”

S -> NP VBD ([0:2], “NP-> DT NP *”)

DT -> the ([0:2], “S-> NP * VBD”)

NP -> DT NP

NN -> cat | dog

VBD -> sat | barked

The steps in a bottom up chart parsing algorithm can be speci-

fied by the two parsing rules shown in Figure 4.19. These rules

describe how to combine edges to create longer edges.

Figure 4.19 Chart parsing rules used in CKY

Bottom-up rule: When a new category is seen (or nonterminal rule for that cate-
gory is completed completed), then for any rule where that category is leftmost
on the RHS, create a new edge with the dot just to the left of the category.

If ( ([i:j], X) or [i:j] X -> U V *) and A -> X Y, then add ([i:i], A -> * X Y)
Note: Y can be empty.

Fundamental rule: When a new category is seen or nonterminal created, then
for all active rules where the category is leftmost on the RHS of the dot, and the
spans are adjacent, create a new edge with the dot moved to the right of that cat-
egory and combine the spans.

If ([i:j], A -> X * Y Z and [j:k] Y -> U V *, then add ([i:k], A -> X Y * Z)
Note: X and Z can be empty.

In practice, CKY can be most efficiently implemented as dynamic

programming using a two dimensional matrix. In dynamic pro-

gramming, instead of explicitly representing a location [i:j] when

we parse a sentence of length N, we create an N by N matrix

and store the edges with span [i:j] at row i and column j in the

matrix22. Then, for any complete parse with topmost rule S →
X Y, there would be an edge ([0:N], S → X Y *). Figure 4.20

shows the pseudocode for the CKY algorithm as dynamic pro-

gramming. To start, we place the words or unary lexical rules

at their corresponding locations. then we iterate over all possi-
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ble lengths of spans, starting at 2 and ending at the length of the

sentence, and for each span length we iterate over all locations in

the table. Then we iterate over all possible edges, from all possi-

ble starting points, and apply bottom up and fundamental rules

wherever they would apply. (The pseudocode does not list the

empty edges created by the bottom up prediction rule, but they

are shown in the trace shown in Figure 4.21 that follows.)

Figure: 4.20 Pseudocode for a basic CKY algorithm (an exhaustive enumeration
over all possible edges)

Figure 4.21 shows a bottom up chart parse of the sentence “The

dog barked.”, along with the corresponding active and inactive

edges and their placement within a matrix when using dynamic

programming. This trace follows the implementation of the bot-

tom up chart parsing algorithm as implemented in NLTK. (It

also follows the convention that when matrices for a chart parse

are shown, they are shown with the vertical axis reversed so that

the parse appears in the upper right corner.)
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Figure 4.21 Trace of a bottom up chart parse of “The dog barked.”

Matrix values Edges in chart Parser actions

[0:0] DT → *the
[0:1] DT → the *
[0:0] NP → * DT NN
[0:1] NP → DT * NN

Predict the, and
apply the
fundamental rule
to create a
completed edge
from 0 to 1.
Predict bottom
up an empty NP (*
NP) and apply the
fundamental rule
to get NP -> DT *
NN.

[0:0] DT → *the
[0:1] DT → the *
[0:0] NP → * DT NN
[0:1] NP → DT * NN
[1:1] NN → *dog
[1:2] NN → dog *
[0:2] NP → DT NN *
[0:0] S → * NP VBD
[0:2] S → NP * VBD

Predict dog and
apply the
fundamental rule
to create a
completed edge
from 1 to 2.
Apply
fundamental rule
to complete the
NP at [0:2] and
extend the S, to
get S -> NP *
VBD.

[0:0] DT → * the
[0:1] DT → the *
[0:0] NP → * DT NN
[0:1] NP → DT * NN
[1:1] NN → * dog
[1:2] NN → dog *
[0:2] NP → DT NN *
[0:0] S → * NP VBD
[0:2] S → NP * VBD
[2:2] VBD→* barked
[2:3] VBD→ barked
*
[0:3] S → NP VBD *

Predict
barked and apply
the fundamental
rule to complete
VBD and apply
the fundamental
rule again to
complete the S.

In practice, when using a bottom-up chart parsing algorithm,

there will be huge number of possible edges and so some mech-

anism is needed to prune edges that are not likely to be part of

the final parse. This difficulty is the primary reason for using a

probabilistic context free grammar (PCFG). When using a PCFG

rather than a CFG, the CKY algorithm is adapted to use the prob-

abilities values associated with each rule in the grammar. For
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simplicity, the probabilities are treated as independent, which

means that during parsing they are combined using multiplica-

tion. The probability of a parse tree will be calculated as the

product of the probability of the rule for the root times the prod-

uct of the probabilities associated with each of the subtrees (i.e.,,

categories on the right-hand side). Thus, for the grammar shown

in Figure 4.12, the probability for the sequence “Your money talks”

as a NP would be calculated as the product “0.1*0.6*0.4*1.0”

(0.024), whereas the probability for a S would be the product

“1.0*0.3*0.6*0.4*0.6*1.0” (0.0432). When multiple parses for a

span [j:k] of text are possible, the CKY algorithm for PCFG will

store, for each nonterminal X at location [i:j], the highest prob-

ability parses found for X, a variant of beam search, where the

beam can be 1, 1000, 10000, or whatever seems suitable. When

a PCFG is lexicalized, the process is similar, except that when

the product for the entire parse tree is computed, there is an

additional multiplicand for the estimated probability (based on

the frequency in the source corpus) associated with the top level

S having the designated lexical head (e.g., S(talks)); so if “talks”

occurs as the main verb for 2 sentences out of 1000, for the sen-

tence above, we would multiply 0.002 with the 0.0432).

4.4.2 Shift-Reduce Parsing

A Shift-Reduce parser, also called a transition-based parser,

maintains the state of the current parse and applies transitions

that update the parse state, such as combining two inputs or

combining an input with a previously built structure. When

implemented as a search procedure, the state is usually repre-

sented using two data structures: a queue of words to be parsed

and a stack of partially completed structures. (In some cases, the

parser also maintains an agenda of the best partial parse states.)

The initial state has all the words in order on the queue and an

empty stack. At each parsing step, the parser selects and applies

transitions to the current state until its queue of inputs is empty

and the current stack only contains a finished tree.
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The two main types of transitions are shift, which is where a

word moves from the queue onto the stack and reduce, which

is where nodes on the stack are combined and relabeled. Imple-

mented SR parsers may use additional transitions (such as

“accept”, “finalize,” or “idle”) or specialize the reduce action into

several subtypes (e.g., based on the lexical head), to control the

parsing process or make it more efficient. Shift-reduce parsing

can either be used to do constituency parsing for context free

grammars or dependency parsing. It has also been used in the

implementation of compilers for programming languages. Fig-

ure 4.22 below gives an example of a small CFG grammar and a

sample parse, for the expression “T and T”, where “$” is used to

indicate the bottom of a stack or the back of a queue.

Figure 4.22 Example of a shift-reduce parse for “T and T”

Sample grammar Sample parse

S → T
S → S and S
S → S or S

Stack Buffer Action Rule

1 $ T and T$ Shift NA

2 $T and T$ Reduce S → T

3 $S and T$ Shift NA

4 $S and T$ Shift NA

5 $S and T $ Reduce S → T

6 $S and S $ Reduce S → S and S

7 $S $ Accept

For constituency parsing, with a grammar rule A→ B C, a reduce

operation might replace two nonterminals B and C by the LHS

nonterminal A. For a dependency grammar, if the top two items

on the stack could be linked by a dependency relation, the items

will be removed and replaced by the one that is considered the

head, such as the verb in an nmod relation, and the relation

added to another data structure. We will consider another exam-
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ple of shift reduce parsing in the next section, when we discuss

Dependency Parsing.

As with probabilistic context free parsing, shift-reduce parsing

may be adapted to use a scoring function to choose what type of

transition to apply in each state when there are multiple options.

These scoring functions are normally learned from data, either as

probabilities estimated from a treebank or as values derived from

trained neural network models. A shift-reduce parser might be

greedy about transitions, always choosing the option that scores

best. Or, it might implement a type of beam search (see Chapter

2) where only the a subset of top-scoring partial states are kept

on the agenda and continues until the highest scoring state on

the agenda is finalized. Beam search can provide better accuracy

in less time, but it requires models that were specifically trained

to work with beam search. A model not trained for beam search

only has features for states reached for the correct parse trees.

By contrast, a model trained to use beam search also trains with

negative features for incorrect states on the beam, (i.e., features

for phrase-level ambiguities that were not part of the final parse)

resulting in many more features and therefore a much larger

model.

4.4.3 Search-Based Dependency Parsing

First we will consider how dependency parsing can be under-

stood using search; in the next section we will reconsider depen-

dency parsing as classification-based parsing. Dependency

parsing involves choosing for each word, what other word it is

related to as a dependent. By convention, the top-level node is

called the root and the main verb is its dependent. A variety

of search-based algorithms have been used to build dependency

structures including ones based on: dynamic programming,

maximum spanning trees, constraint satisfaction, or greedy algo-

rithms, similar to those already discussed, although some also

combine supervised machine learning to get better results23.

Search-based dependency parsing algorithms all start the
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search with the main verb and then try to generate dependents

by traversing the different types of edges known to be associated

with the root, based on subcategorization information (see

Chapter 3) stored in the lexicon. For example, in the sentence: “I

baked a cake in the oven.” the main verb (root) is “baked”. The

verb has a noun subject (nsubj) relation to “I”. There is a deter-

miner (det) relation between “cake” and “a”. There is a deter-

miner object (dobj) between “cake” and “baked” . There is a case

relation between “oven” and “in” and a determiner (det) relation

between “oven” and “the”. There is a noun modifier (nmod) rela-

tion between “cake” and “oven”.

Naive dependency parsing algorithms based on breadth first

search consider and score all possible combinations of head and

dependent – which leads to a Big-O complexity of O(n5), but

McDonald et al’s (2005) approach is O(n2). Using a corpus anno-

tated with dependency trees, a classifier is trained to compute

a score for each type of edge. The types of features include: the

head word, the dependent word, and part of speech (POS), sep-

arately; the head word, dependent word and POS, as bigrams

(e.g., (the, DT)); the words between head and dependent; and the

length and direction of the dependency. The training is based on

maximizing the accuracy of the overall tree. The classifier is then

used to discriminate among alternative trees, where the score

of a tree is calculated as the sum of the score of the dependen-

cies. An alternative classifier-based approach involves training

classifiers to optimize the actions of a shift-reduce parser24,25.

The algorithms extend the traditional operators of a shift-reduce

parser to include different types of reduce operators for the dif-

ferent types of edges and directions of the edges, to allow for

more accurate scoring. Once actions are scored, then a greedy

search algorithm can be used to select the actions that comprise

the single best parse or a beam search can be used to select from

just a subset of the best scoring ones.

Figure 4.23 shows the start of a shift-reduce dependency parse

of the sentence “Happy children like to play with their friends.” In

112 SUSAN MCROY



the figures, the first column shows the action (where LA and RA

designate two types of attachment, left and right respectively).

LA attaches the front element of the queue to the top of the stack

with the element taken from the queue placed on the left; RA

attaches the front element of the queue to the top of the stack

with the element on the right. The subscript shows the type of

dependency, such as amod. The second column shows the sym-

bols that have been shifted from the input buffer onto the stack.

The third column shows the queue remaining input; and the last

column shows the set of dependency structures that have been

created.

Figure 4.23 Example initial set of actions of a shift-reduce dependency parse

Figure 4.24 shows the last few steps of the same parse. Note,

if one were to draw a tree at the same time, every shift action

would create a sibling whereas each LA/RA adds a new edge

between a head and a dependent. In Figure 4.24, the “Reduce”

actions at the end of the parse remove items from the stack with-

out creating any new dependencies. The parse ends when the

queue (column 3) is empty.26.
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Figure 4.24 Final actions of a shift-reduce dependency parse

Shift-reduce dependency parsers can use information learned

from a corpus to score the actions of a shift-reduce parser to

resolve ambiguities, similar to the scoring method used to rank

alternatives with a PCFG, by selecting actions that result in more

commonly seen structures. The treebanks for training depen-

dency parsers can either be ones that include dependency trees,

or they can be adapted from phrase structures, as found in the

Penn Treebank. There are also algorithms for translating depen-

dency trees into phrase structures27, 28. In the more recent work

of Lee and Wang29 dependency structures are mapped to con-

stituent trees in a two-phase process, as shown in Figure 4.25,

where the first phase traverses the dependency structure to con-

struct a partial set of constituent spans and the second phase

applies a constraint-based maximum entropy parser30, a type of

statistical parser similar to a shift-reduce parser, to the original

sentence to select the best phrase-level nodes.

Figure 4.25 Pseudocode for mapping dependencies to constituency trees,
adapted from Lee and Wang (2016)

4.5 CLASSIFICATION-BASED PARSING

Most large-scale parsers developed since 2015 use sequence clas-
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sification as the primary method rather than search. Most are

also targeted to producing a dependency structure, because the

structures are more language independent and sufficient for

many downstream tasks. However, neural constituency parsers

also exist. Versions exist that provide either a single best parse or

a few best alternatives via a beam search. The training for a beam

search is different than for a single-best parser. A single-best

model only uses features or states that were associated with the

correct parse found in the training set. A model that can return

and rank multiple alternatives must also train negative features

to prevent poorer quality alternatives from becoming part of the

final set. Most approaches to supervised machine learning have

been applied to model language at the sentence level, including

linear models (such as Support Vector Machines), shallow neural

networks (such as Perceptrons), and deep networks, which are

fast emerging as the dominant approach 31.

4.5.1 Classification-Based Constituency Parsing

Modern classification-based constituency parsing uses deep

neural networks. These networks do not require a grammar or

lexicon, all knowledge is embedded in the language model that

has been learned by processing a training dataset that includes

parse trees. For a constituency parser, these parse trees must be

constituency trees, such as found in the Penn Treebank. Current

approaches often use an internal data representation similar to

chart, consisting of labelled spans, e.g., (0, 2, NP) . For an internal

representation based on charts, there are three aspects: represen-

tations of tokenized input, representations of spans, and scoring

mechanisms for labels. The input layer comprises representa-

tions for several types of information for each word: word mean-

ing, word position in the sentence, and part of speech, usually as

embeddings that are learned as part of the overall training with

the treebank, but they can be learned separately and input pre-

trained. The internal layers are often a bidirectional Long Short

Term Memory (LSTM), which is one that operates on both a for-
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ward and a reversed version of the sentence32, or a self-atten-

tive encoder33, to account for constraints from either side of

the sentence surrounding the word. (In a self-attention model,

nodes can focus on locations, and the weight of each is also a

learned value, independent of the number of intervening words,

to account for long-distance interactions, such as for questions

where the wh-word seems to have been moved to the front.)

These layers generate a score for each combination of a label

and a span. The final stage of constituency parsing networks is

typically a decoder to generate trees, by performing a CKY-style

bottom up traversal that builds a tree comprising the highest-

scoring labelled spans.

4.5.2 Classification-Based Dependency Parsing

Classification based approaches to dependency parsing also now

use deep neural networks, trained using a dependency treebank.

These networks are trained to jointly select: a) pairs of words

that are optimally head and dependent and b) optimal depen-

dency relations for candidate pairs (head and dependent words).

In the final layer, the scores of all candidates are examined to

select the best one. When training the network, the overall loss

to be minimized is a combination of the loss (e.g., a sum) for the

component subproblems. In intuitive terms, these networks are

trained to provide a score that is akin to an estimated joint prob-

ability of the head, dependent, and relation, based on the “context”

of the sentence. However, scores may not be limited to values

between 0 and 1 and, for these networks, context is not a simple

matter of nearby word or part of speech tag, but instead includes

vector representations for a wide range of features such as part of

speech tags, morphological features, character sequences, word

types (as both a lemma and a semantic embedding), and some-

times scalar values to indicate the linear order and the distance

between the head and the argument. These input vectors allow

the networks to generalize over minor variations in spelling,

meaning, or syntactic expression.
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One of the most accurate (and most complex) exemplars of the

neural classification approach has been developed by the Stan-

ford NLP group. Their current implemented NLP pipeline is

called Stanza and an illustration of the overall architecture is

shown in Figure 4.2634. Designed to allow input as raw text, the

pipeline of Stanza uses a complex neural architecture involving

several layers to first create separate embeddings for each type of

information (e.g., multiple layers of biLSTM, a final LSTM layer,

several layers of Rectified Linear Units (ReLU), followed by addi-

tional layers to perform matrix operations that combine the sep-

arate vectors to select the optimal head, dependent, and relation

combinations35, 36. Most of the processes listed on the left have

been discussed previously, except “multi-word token expansion”

which would handle things like mapping contractions onto sep-

arate tokens (e.g., “don’t” onto “do and not”) and named entity

recognition, which is a type of shallow semantic processing that

labels proper nouns and expressions with their general type, such

as person, organization, location, etc. (We will discuss named

entity recognition in a later chapter.)

Figure 4.26 The Stanza NLP processing pipeline (image from Qi et al (2020))

Stanza has has been implemented in Python, using the PyTorch

software libraries for machine learning. It is open source, but

may not be suitable for everyone, as it runs best on a GPU-

enabled machine. Simpler architectures, using fewer layers, also
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do quite well, including UDPipe, which achieves 70 to 85% accu-

racy, runs on common laptops, and has libraries implemented for

several programming languates37, 38.

Classification-based parsers are available as parts of nearly all

recent NLP software libraries. These libraries include one or

more pretrained models for large widely used datasets, but also

provide instructions and tools for updating or training mod-

els with new data. Data for training neural networks for depen-

dency parsing must usually be provided in what is known as the

CoNLL-U format, which is an ASCII format defined for a series

of yearly task-based challenges (which are conferences with a

common data set where participants submit results for prespeci-

fied tasks using the data)39.

4.6 SHALLOW PARSING

Some applications do not require a full parse of the sentence,

just a subdivision of the text into the top-level phrases. This

process is called shallow parsing or chunking, Shallow parsing

can involve either the creation of regular expressions to identify

boundaries or the training of a classifier to find the end points

of chunks.

4.6.1 Regular Expressions for Chunking

The grammars used for chunking are defined as complex regular

expressions, which are similar to context free grammars, but typ-

ically do not involve recursion. For example to say that an NP

chunk should be formed by a sequence of an optional determiner

(DT) followed by any number of adjectives (JJ) and then a noun

(NN) or as a sequence of proper nouns, one would use the reg-

ular expression “NP: {<DT>?<JJ>*<NN>}{<NNP>+}” in NLTK,

where “?” indicates optional, “*” means occurs “zero or more”

times, and “+” means “one or more” times.

When regular expression parser runs, it searches for sequences

of tokens that match the pattern and produces a list, with each

matched sequence labelled with the pattern type. To be able to
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define and use patterns recursively, one typically must iterate

over the grammar multiple times, corresponding to the maxi-

mum depth of recursion that is allowed. Figure 4.27 shows an

example, adapted from Figure 7.10 of Chapter 7 of the NLTK

book40, that illustrates the use of a recursive (cascaded) chunk

grammar. NLTK does allow some recursion with regular

expression-based chunking, but only if given a maximum depth,

as done with the “loop=2” parameter in this example. By con-

trast, a CKY or Shift-Reduce parser will perform recursion to an

arbitrary depth.

Figure 4.27 Example of a chunk grammar with recursion and its usage in NLTK

RegEx
grammar

grammar = r"""
NP: {<DT|JJ|NN.*>+}
PP: {<IN><NP>}
VP: {<VB.*><RP|NP|PP|CLAUSE>+$}
CLAUSE: {<NP><VP>}"""

Chunk
grammar

>>> sentence = [("John", "NNP"),
... ("thinks", "VBZ"), ("Mary", "NN"),
... ("saw", "VBD"), ("the", "DT"),
... ("cat", "NN"), ("sit", "VB") ("down", "RP")]
>>> cp = nltk.RegexpParser(grammar, loop=2)
>>> print(cp.parse(sentence)) (S
(NP John/NNP)
thinks/VBZ
(NP Mary/NN)
(VP saw/VBD (CLAUSE
(NP the/DT cat/NN)
(VP sit/VB down/RP))))

4.6.2 Classification-Based Chunking

To annotate chunks for training a classifier, some systems use an

encoding that is called CoNLL 2000, because it is based on the

encoding used from that conference. That encoding combines

POS tags with labels that indicate the beginning (B) and inside (I)

of the chunks, and use O tags to indicate “outside a chunk”. An

PRINCIPLES OF NATURAL LANGUAGE PROCESSING 119



extended version of this encoding (CoNLL 2002) combines POS

tags with semantic types for named entities, which are proper

name expressions such as for people, organizations, or locations.

Figure 4.28 shows examples of these two encodings with chunks

on the left and named entities on the right. With training data

labelled with CoNLL tags, a sequence classifier can be used to

learn to tag unseen data, and expressions extracted by merging

adjacent sequences of tokens that have related tags, e.g., [B-Loc,

I-Loc, I-Loc], terminated by an “O” tag. Other similar encoding

strategies are sometimes used.

Figure 4.28 Examples of CoNLL 2002 tags for named entities

Encoding of Chunks Encoding of Named Entities

Michael NNP B-NP

Lovell NNP I-NP

accepted VBD B-VP

the DT B-NP

position NN I-NP

of IN B-PP

president NN I-NP

of IN B-PP

Marquette NNP B-NP

University NNP I-NP

Michael NNP B-PER

Lovell NNP I-PER

accepted VBD O

the DT O

position NN O

of IN O

president NN O

of IN O

Marquette NNP B-ORG

University NNP I-ORG

As a start, one might also try using a prettrained NER tagger,

such as found in a software toolkit such as spaCy or CoreNLP.

The taggers can be invoked by running the complete pipeline (the

usual case), or one can call a tagger separately, after first splitting

the text into separate words using “split()”41.

4.7 SUMMARY

This chapter considered tasks associated with identifying the

syntactic structure of natural language including tokenization,

part-of-speech tagging, grammars, and parsing. We considered

two types of analyses: parsing to identify syntactic constituents,

such as phrases and clauses, and parsing to identify dependency

structures, the sets of binary relations that connect the head
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words of constituents. Grammars describe what sequences com-

prise a language. Identifying how words or sequences match the

grammar can be done by either a search process or classification.

Creating datasets for classification is typically accomplished in a

semi-automated manner: first, apply a search-based parser and

then hand correct the analyses. Pretrained language models can

sometimes be extended without adding new data, by enhancing

the input representations to include semantic information (using

word embeddings) or to include character-level embeddings

where dense vectors are trained to map strings of characters

(including those for non-standard spellings) onto known words.

Although dependency structures provide information about syn-

tactic function, it should be noted that this is not the same as a

meaning representation or semantics. In the next chapter we will

consider what sorts of semantic representations are possible and

computational methods for creating them.
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CHAPTER 5.

SEMANTICS AND SEMANTIC INTERPRETATION

This chapter will consider how to capture the meanings that

words and structures express, which is called semantics. The goal

of a meaning representation is to provide a mapping between

expressions of language to concepts in some computational

model of a domain, which might be specified as a software appli-

cation or as a set of well-formed formulas in a logic (or as some

hybrid of the two, such as an AI frame system1, 2, 3). A reason to

do semantic processing is that people can use a variety of expres-

sions to describe the same situation. Having a semantic represen-

tation allows us to generalize away from the specific words and

draw insights over the concepts to which they correspond. This

makes it easier to store information in databases, which have a

fixed structure. It also allows the reader or listener to connect

what the language says with what they already know or believe.

As an example, consider what we might learn from the follow-

ing sentence: “Malaysia’s crude palm oil output is estimated to

have risen by up to six percent.”4. This sentence tells the reader

(among other things) that countries have associated manufactur-

ing and agricultural outputs, that one of Malaysia’s outputs is

“crude palm oil”, and that some estimated measure of that out-

put for some time period increased by “six percent or less”. How-

ever, the reader might need to clarify what type of measure (e.g.,

volume or value) and what time period (e.g., month, year, or
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decade), or they might rely on background knowledge, such as

knowing that this was an annual report of production volumes.

Semantic processing can be a precursor to later processes, such

as question answering or knowledge acquisition (i.e., mapping

unstructured content into structured content), which may

involve additional processing to recover additional indirect

(implied) aspects of meaning. The primary issues of concern for

semantics are deciding a) what information needs to be repre-

sented b) what the target semantic representations are, including

the valid mappings from input to output and c) what processing

method can be used to map the input to the target representa-

tion.

Decisions about what needs to be represented will depend on

the target task, but there are four main types of information that

are typically included. These four things are:

• the entities that are being described,

• the types of events that are being mentioned and the roles

that the entities fulfill with respect to the event,

• the type of propositional attitude that a sentence

expresses, such as a statement, question, or request, and

• the intended word senses for each occurrence of a word

in a sentence.

This information is determined by the noun phrases, the verb

phrases, the overall sentence, and the general context. The back-

ground for mapping these linguistic structures to what needs to

be represented comes from linguistics and the philosophy of lan-

guage.

The target semantic representation will also depend on the

target task. Shallow representations might identify the main verb

and the spans of text that correspond to the entities that fulfill

the functional parameters or semantic roles associated with the

intended meaning of the verb. Deeper representations include

the main verb, its semantic roles and the deeper semantics of
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the entities themselves, which might involve quantification, type

restrictions, and various types of modifiers. The representation

frameworks used for Natural Language semantics include formal

logics, frame languages, and graph-based languages. Shallow rep-

resentations might be sufficient for tasks related to mapping

unstructured content into a structured representation (e.g.

knowledge acquisition). Deep representations would be useful

for tasks that require being able to go from a structured repre-

sentation back into text via natural language generation, such as

report generation or question answering from a knowledge base.

The processing methods for mapping raw text to a target rep-

resentation will depend on the overall processing framework

and the target representations. A basic approach is to write

machine-readable rules that specify all the intended mappings

explicitly and then create an algorithm for performing the map-

pings. An alternative is to express the rules as human-readable

guidelines for annotation by people, have people create a corpus

of annotated structures using an authoring tool, and then train

classifiers to automatically select annotations for similar unla-

beled data. The classifier approach can be used for either shallow

representations or for subtasks of a deeper semantic analysis

(such as identifying the type and boundaries of named entities or

semantic roles) that can be combined to build up more complex

semantic representations.

We will now consider each of these three aspects in greater

detail. It should be noted that for some problems, a deep seman-

tics such as described here is not necessary. In Chapter 8, we

will discuss information extraction, which maps free text onto

data structures without trying to provide any mapping between

expressions in language and entities or events in an underlying

model of a task domain or the “real world.”

5.1 INFORMATION TO BE REPRESENTED

For sentences that are not specific to any domain, the most com-

mon approach to semantics is to focus on the verbs and how they
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are used to describe events, with some attention to the use of

quantifiers (such as “a few”, “many” or “all”) to specify the entities

that participate in those events. These models follow from work

in linguistics (e.g. case grammars and theta roles) and philosophy

(e.g., Montague Semantics5 and Generalized Quantifiers6). Four

types of information are identified to represent the meaning of

individual sentences.

First, it is useful to know what entities are being described.

These correspond to individuals or sets of individuals in the

real world, that are specified using (possibly complex) quanti-

fiers. Entities can be identified by their names (such as a sequence

of proper nouns), by some complex description (such as a noun

phrase that includes a head noun, a determiner, and various types

of restrictive modifiers including possessive phrases, adjectives,

nouns, prepositional phrases, and relative clauses), or by a pro-

noun.

Second, it is useful to know what types of events or states

are being mentioned and their semantic roles, which is deter-

mined by our understanding of verbs and their senses, including

their required arguments and typical modifiers. For example, the

sentence “The duck ate a bug.” describes an eating event that

involved a duck as eater and a bug as the thing that was eaten.

The most complete source of this information is the Unified

Verb Index.

Third, semantic analysis might also consider what type of

propositional attitude a sentence expresses, such as a statement,

question, or request. The type of behavior can be determined by

whether there are “wh” words in the sentence or some other spe-

cial syntax (such as a sentence that begins with either an auxil-

iary or untensed main verb). These three types of information are

represented together, as expressions in a logic or some variant.

Fourth, word sense discrimination determines what words

senses are intended for tokens of a sentence. Discriminating

among the possible senses of a word involves selecting a label

from a given set (that is, a classification task). Alternatively, one
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can use a distributed representation of words, which are created

using vectors of numerical values that are learned to accurately

predict similarity and differences among words. One might also

combine a symbolic label and a vector.

In some specialized domains, the primary focus is on the speci-

fication of ontologies of objects rather than events, where objects

may have very complex requirements for their attributes.

Ontologies specify definitions of concepts, place them into a

hierarchy of subtypes, and define the various types of relations

that they hold (e.g., “subclass-of”, “instance-of”, “part-of”, etc.),

and any restrictions on these relations. For example, in the

domain of anatomy, there is a distinction between “shared” and

“unshared” body parts. Below is an explanation from a paper

describing one such ontology:

“In modeling anatomy, we not only need to

represent the part-of relations, but also we

need to qualify relations between a part and

a whole with additional attributes. For exam-

ple, parts of an organ can be shared (that is,

they belong to several anatomical entities) or

unshared (they belong to one anatomical

entity). Blood vessels and nerves that branch

within a muscle must be considered a part of

both that muscle and the vascular or neural

trees to which they belong. In contrast, the

fleshy part of the muscle (made of muscle tis-

sue) and the tendon (made of connective tissue)

are unshared”. 7

To represent this distinction properly, the researchers chose

to “reify” the “has-parts” relation (which means defining it as a

metaclass) and then create different instances of the “has-parts”

relation for tendons (unshared) versus blood vessels (shared).

Figure 5.1 shows a fragment of an ontology for defining a ten-

don, which is a type of tissue that connects a muscle to a bone.

When the sentences describing a domain focus on the objects,
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the natural approach is to use a language that is specialized for

this task, such as Description Logic8 which is the formal basis for

popular ontology tools, such as Protégé9.

Figure 5.1 Fragment of the Foundational Model of Anatomy ontology for defining
a tendon (example and image from Noy et al (2004)

5.1.1 Case Grammar, Events, and Semantic Roles

Theories for what a semantics for natural language sentences

should include have their basis in what linguists call a “case

grammar”. Case grammars describe the different roles that are

associated with different verbs or types of verbs, for example

action verbs have an agent and transitive verbs have a direct

object, whose role might be described as either the theme or the

patient depending on whether the verb affects the object in some

way. Case grammars differ from typical representations given

in a logic, where one might represent different types of events

using different predicate symbols, where each predicate symbol

is predefined to have a fixed number of arguments, each of which

occurs in a fixed order. For example, the sentence “Rico vis-

ited Milwaukee.” might be represented in a logic as “visit(Rico,

Milwaukee)”. The arguments of these predicates are terms in

the logic, which can be either variables bound by quantifiers,

or constants which name particular individuals in the domain.

However, verbs can have both required arguments and optional

modifiers. Case grammars involve naming the sets of required

and modifying roles for each sense of a verb explicitly, for exam-

ple “[Agent Rico]” or “[Location Milwaukee]”. This is analogous

to using keyword arguments in a programming language. Exam-

ples of semantic (thematic) roles include “Agent”, which is a sen-
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tient being that performs an action and “Patient” which is an

affected object of some action. Figures 5.2 to 5.5 include exam-

ples of roles, from VerbNet3.3, part of the Unified Verb Index.

Figure 5.2 Examples of semantic roles that commonly appear in the subject
position

Subject relations Example

Agent ( +intentional, +sentient) [The cat] chased a mouse.

Cause (-intentional, +nonsentient) [The wind] rattled the windows.

Experiencer (+sentient) of
perception [The children] tasted the soup.

Pivot [The bottle] contains seltzer water.

Theme (-affected) [The ball] rolled down the hill.

Figure 5.3 Examples of semantic roles that commonly appear in the object
position.

Object relations Example

Attribute Oil increased in [price].

Beneficiary Claire sang a song for [her teacher].

Instrument The chef baked a cake in [the oven].

Material An oak tree will grow [from an acorn].

Patient (+affected) The wind destroyed [the sand castles].

Product (+concrete) Boeing builds [aircraft].

Recipient (+animate) The teacher gave a book [to a student].

Result The delay threw the project [into chaos].

Stimulus The children saw [some clouds].

Theme (-affected) The boy rolled [the ball] down the hill.

Topic The teacher taught a class [about verbs.]
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Figure 5.4 Examples of semantic roles that express a place (as a modifier).

Place relations Example

Asset Carmen purchased a dress [for $50].

Destination I brought a book [to the meeting].

Extent (+measurable_change) The top rotates [90 degrees].

Goal I dedicated myself [to the cause].

Location (+concrete) I searched [the cave] for treasure.

Source The cleaner removes stains [from clothing].

Value (+scale) He put the price [at 10 dollars].

Figure 5.5 Examples of semantic roles that express a time or span of time (as a
modifier).

Temporal relations Example

Time He was happy [after receiving his marks].

Duration The class continued [for two hours].

The set of roles associated with a verb by a case grammar are

called “semantic frames”. In linguistics, there have been several

approaches to defining case grammars. The first case grammars

were defined by Dr. Charles J. Fillmore in 1968, in his “The

Case for Case”. This work defined commonly occurring cases

such as Agent, Object, Benefactor, Location, and Instrument, and

provided examples for a small set of verbs for illustration. In

1997, Fillmore began the FrameNet project, a more comprehen-

sive, data-driven effort to define a hierarchy of semantic frames

and create a corpus of sentences annotated with semantic roles.

FrameNet now includes over 1200 different frames. Software for

labelling sentences with FrameNet roles is included in the Nat-
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ural Language Toolkit. FrameNet is now also part of a larger

resource called the Unified Verb Index (UVI). The UVI also

includes verb types and annotated text from PropBank,

OntoNotes, and VerbNet. The UVI is maintained by the creators

of VerbNet at the University of Colorado.

There is an ISO standard for semantic roles which is part of

ISO standard 24617, which is a standard for Language resource

management — Semantic annotation framework (SemAF).

When complete, ISO 24617 will consist of eight parts, of which

the following six were the first to be completed:

— Part 1: Time and events (SemAF-Time, ISO-TimeML)

— Part 2: Dialogue acts

— Part 4: Semantic roles (SemAF-SR)

— Part 5: Discourse structure (SemAF-DS)

— Part 7: Spatial information (ISO-Space)

The last parts to be finalized are Part 8: Semantic relations

in discourse (SemAF-DRel) and Part 6: Principles of semantic

annotation (SemAF-Basics).

5.1.2 Quantification and Scoping

Quantifiers allow one to describe the properties of individuals

and sets. In a first order logic of mathematics, there are just

two quantifiers, the existential and the universal, and they bind

only terms, which are expressions that denote individuals in the

domain. Quantifiers introduce an additional type of ambiguity,

related to the set of relations over which they bind variables,

known as the “scope” of the quantifier. For example, the sentence

“Every cat chased a mouse” might mean either that several cats

all chased the same mouse, or each cat chased their own personal

favorite mouse. Natural language systems can choose to leave

quantifiers unscoped or to make a guess based on domain-spe-

cific knowledge. Other mechanisms are needed to address scop-

ing across multiple sentences (e.g., some graphical

representations use structure sharing, where each entity corre-
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sponds to a unique structure and all references to it point back to

this same structure.)

The types of quantification that people express in natural lan-

guage can be much more diverse than mere existence or uni-

versality, however. Natural language quantifiers can specify the

size of a set at various levels of precision (e.g., “Exactly one”,

“At least two”, or “Most”) and they can specify a wide variety of

type constraints, such as “most bears”, “most hungry bears”, “most

bears that originated from Asia”. To address this variety, the rep-

resentation of semantics for natural language often involves a

mechanism known as “Generalized Quantifiers”10. A generalized

quantifier consists of the quantifier name, a set of quantified

variables, and a constraint, which is a well-formed expression

that uses the given variables. These quantifiers and property con-

straints will hold over any expressions within their scope. For

example, “Most small dogs like toys” could be expressed in a log-

ical framework as [Most x, small(x) and dog(x) [All y toys(y):

like(x,y)]]. The interpretation of such quantifiers must be

defined as some function, which might depend on the domain.

For example, one might define “most” as either “more than 50%”

or as “more than 60%”. In some ontology tools, these are defined

as “role-bounded” quantifiers (e.g., in Protege.)

5.2 COMPUTATIONAL FRAMEWORKS FOR SEMANTICS

There are two broad types of semantic frameworks: domain

dependent and domain independent. Domain dependent seman-

tics might be considered a mix of semantics and pragmatics –

sentences are used to do something so the meaning is the proce-

dure call or query that one would execute to do it. For this rea-

son, these representations are sometimes also called Procedural

Semantics11,12. Domain-independent semantics includes identi-

fying the actions, participants, and objects described in language,

and possibly other important information, such as when an event

occurred and the manner or location in which it occurred. It

may also include the interpretation of quantifiers to allow one
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to select the appropriate set of participants and objects. These

representations might be used for a variety of applications, such

as machine translation, knowledge acquisition (i.e., learning by

reading), question answering, or the control of software. Domain

independent semantics typically use some variant of mathemati-

cal logic or a graph-based equivalent.

5.2.1 Procedural Semantics

The notion of a procedural semantics was first conceived to

describe the compilation and execution of computer programs

when programming was still new. In the 1970’s, psychologists,

including George A. Miller13 and Philip Johnson-Laird14,

described how this metaphor might better describe how lan-

guage is used to communicate as it offered a uniform framework

for describing how it is used “to make statements, to ask ques-

tions and to answer them, to make requests, and even to express

invocations and imprecations” – unlike formal logics which ulti-

mately reduce the meaning of all sentences to one of either “true”

or “false”. Of course, there is a total lack of uniformity across

implementations, as it depends on how the software application

has been defined. Figure 5.6 shows two possible procedural

semantics for the query, “Find all customers with last name of

Smith.”, one as a database query in the Structured Query Lan-

guage (SQL), and one implemented as a user-defined function in

Python.

Figure 5.6 Examples of procedural semantics

Sentence: Find all customers with last name of Smith

SQL: SELECT * FROM Customers WHERE Last_Name=’Smith’

Python: Customers.retrieveRows(last_name=”Smith”)

For SQL, we must assume that a database has been defined

such that we can select columns from a table (called Customers)
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for rows where the Last_Name column (or relation) has ‘Smith’

for its value. For the Python expression we need to have an object

with a defined member function that allows the keyword argu-

ment “last_name”. Until recently, creating procedural semantics

had only limited appeal to developers because the difficulty of

using natural language to express commands did not justify the

costs. However, the rise in chatbots and other applications that

might be accessed by voice (such as smart speakers) creates new

opportunities for considering procedural semantics, or proce-

dural semantics intermediated by a domain independent seman-

tics.

5.2.2 Methods for Creating Procedural Semantics

Procedural semantics can be created either using rule-based

methods or by annotating a corpus with the target representa-

tion and then training a classifier. When the range of expres-

sions is small, either approach is reasonable. For example, one

can associate semantic annotations with particular parse trees

by creating context free grammar rules with semantic features.

Then, these annotations can be used either during a parse, as

each structure is completed, or afterwards by traversing com-

plete parse trees.

As an example, we will consider mapping queries to SQL

where “city_table” is a table of cities, countries and populations

(shown in Figure 5.7)
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Figure 5.7 List of top four cities of Canada, Mexico, and the United States by
population (according to Wikipedia)

City Country Population

Calgary Canada 1238

Montreal Canada 3519

Toronto Canada 5429

Vancouver Canada 2264

Mexico City Mexico 8851

Ecatepec Mexico 1655

Guadalajara Mexico 1495

Puebla Mexico 1434

New York United_States 8623

Los Angeles United_States 4000

Chicago United_States 2716

Houston United_States 2312

Figure 5.8 gives a set of CFG grammar rules with semantic fea-

tures for creating SQL statements for queries like “What cities

are located in Canada?” or “In what country is Houston?” where

the target representations would be “SELECT City FROM

city_table WHERE Country = ‘Canada’ ” and “SELECT Coun-

try FROM city_table WHERE City = ‘Houston’ ”, respectively.
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Figure 5.8 Grammar for parsing a query into SQL

SBARQ[SEM=(?np WHERE ?sp)] -> WHNP[SEM=?np] SQ[SEM=?sp]

SBARQ[SEM=(?wp WHERE ?sp)] -> WHPP[SEM=?wp] SQ[SEM=?sp]

SQ[SEM=(?v ?np)] -> VBZ[SEM=?v] NP[SEM=?np]

SQ[SEM=(?v ?pp)] -> VBP[SEM=?v] PP[SEM=?pp]

SQ[SEM=(?v ?ap)] -> VBP[SEM=?v] JJP[SEM=?ap]

WHNP[SEM=(?d ?n)] -> WDT[SEM=?d] NNS[SEM=?n] | WDT[SEM=?d]

NN[SEM=?n]

WHPP[SEM=(?p ?wnp)] -> IN[SEM=?p] WHNP[SEM= ?wnp]

PP[SEM=(?p ?np)] -> IN[SEM=?p] NP[SEM=?np]

JJP[SEM=?pp] -> JJ[SEM=?a] P[SEM=?pp]

NP[SEM=“Country=’Canada’ ”] -> NNP[SEM=’Canada’]

NP[SEM=“Country=’Mexico’ ”] -> NNP[SEM=’Mexico’]

NP[SEM=”Country=’United_States’ ”] -> DT NNP[SEM=’United’]

NNPS[SEM=’States’]

NP[SEM=“City=’Calgary’ ”] -> NNP[SEM=’Calgary’]

NP[SEM=“City=’Puebla’ ”] -> NNP[SEM=’Puebla’]

NP[SEM=“City=’Houston’ ”] -> NNP[SEM=’Houston’]

WDT[SEM=’SELECT’] -> ‘Which’ | ‘What’

NNS[SEM=“Country FROM city_table ”] -> ‘country’

NNS[SEM=“City FROM city_table ”] -> ‘cities’

NNP[SEM=(?nnp)] -> ‘Canada’ | ‘Calgary’ | ‘Houston’ | ‘Mexico’ | ‘Puebla’ |

‘United’

NNPS[SEM=(?nnps)] -> ‘States’

VBP[SEM=” “] -> ‘are’

VBZ[SEM=” “] -> ‘is’

JJ[SEM=” “] -> ‘located’

IN[SEM=” “] -> ‘in’

These rules are for a constituency–based grammar, however, a

similar approach could be used for creating a semantic repre-

sentation by traversing a dependency parse. Figure 5.9 shows

dependency structures for two similar queries about the cities in

Canada.

Figure 5.9 Dependency structures for “What cities are in Canada?” vs. “What
cities are located in Canada?”
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Notice that they both contain the dependencies “det” and “case”.

Thus, the result for “cities” and “in Canada” would be SEM (det

(WDT, cities)) = “SELECT Cities from city_table WHERE” and

SEM(case(IN, Canada)) = “Country = Canada”, respectively.

There are several existing corpora that include paired natural

language sentences and SQL queries. One of the largest is the

WikiSQL dataset which contains 80,654 pairs of the NL sen-

tence-SQL query derived from 24,241 Wikipedia tables. There

is also the Stack Exchange Natural Language Interface to Data-

base (SENLIDB) corpus, which includes 24,890 NL sentence-

SQL query pairs constructed using the Stack Exchange API. At

the same time, new formats for databases are emerging, includ-

ing “Graph Databases”, which are optimized for retrieving rela-

tionship triples along with associated properties15,16. They also

support a query language, Cypher, that is much closer to natural

language than SQL, making it more straightforward to map NL

sentences onto graph database languages17. Figure 5.10 shows an

example of a query and an assertion in Cypher.

Figure 5.10 Examples of Cypher query language equivalents for natural language

MATCH (:Person {name: ‘Jennifer’})–[:WORKS_FOR]->(company:Company)
RETURN company.name
Cypher query for “What is the name of the company that Jennifer works for?”

MATCH (jennifer:Person {name: ‘Jennifer’})
MATCH (mark:Person {name: ‘Mark’})
CREATE (jennifer)–[rel:IS_FRIENDS_WITH]->(mark)
Cypher assertion that “Jennifer is friends with Mark”

Procedural semantics are possible for very restricted domains,

but quickly become cumbersome and hard to maintain. People

will naturally express the same idea in many different ways and

so it is useful to consider approaches that generalize more easily,

which is one of the goals of a domain independent representa-

tion.

5.3 DOMAIN INDEPENDENT FRAMEWORKS

Domain independent semantics tries to capture the type of state
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or event and its structure, which includes identifying the seman-

tic roles associated with the event where the core roles would

be action, subject, and object. It sometimes also tries to address

the interpretation of quantifiers. Domain independent semantics

are normally also compositional, which means they can be built

up incrementally, with general mappings between corresponding

syntactic and semantic constituent types. Composition can be

defined formally, using the formalism of the lambda calculus18,

or procedurally, by providing explicit rules for composing

objects of various types. The result can be either a well-formed

expression in a logic, as an expression in an artificial intelligence

frame language resembling a logic (sometimes also called a

“quasi-logical form”) or as a graph. Graph-based representations,

also known as “semantic networks”, offer many advantages, as

they tend to be both more expressive than logic and more effi-

cient, because their structure facilitates inference and supports

sharing of structures across phrases and sentences.

5.3.1 Using First Order Predicate Logic for NL Semantics

Formal logics have a well-defined syntax, which includes the

legal symbols for terms, relations, quantifiers, operators, con-

junctions, and functions and how they can be combined. Well-

formed expressions are defined recursively. Terms can be

constants, variables, or the application of an n-ary function sym-

bol to exactly n terms. Atomic formulas consist of an n-ary rela-

tion symbol with exactly n terms as arguments. (If a logic

includes the equality symbol then termi = termj is also a legal

atomic formula.) Legal non-atomic formulas can be created by

any of the following, where ¬ is the negation symbol (i.e., “not”),

˅ is the symbol for disjunction (“or”), ˄ is the symbol for conjunc-

tion (“and”), Ǝ is the existential quantifier (“there exists”), and ∀ is

the universal quantifier (“for all”).

• If α is a formula then so is ¬α
• If α and β are formulas then so is α ˅ β and α ˄ β
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• If x is a variable and α is a formula then so is Ǝx.α and

∀x.α

Logic does not have a way of expressing the difference between

statements and questions so logical frameworks for natural lan-

guage sometimes add extra logical operators to describe the

pragmatic force indicated by the syntax – such as ask, tell, or

request. Logical notions of conjunction and quantification are

also not always a good fit for natural language.

5.3.2 Compositionality in Logic-Based Representations

Domain independent semantics generally strive to be composi-

tional, which in practice means that there is a consistent map-

ping between words and syntactic constituents and well-formed

expressions in the semantic language. Most logical frameworks

that support compositionality derive their mappings from

Richard Montague19 who first described the idea of using the

lambda calculus as a mechanism for representing quantifiers and

words that have complements. Subsequent work by others20, 21

also clarified and promoted this approach among linguists.

Lambda expressions are function abstractions that can be

applied to their arguments and then reduced, to perform sub-

stitutions for the lambda-bound variables. For example, λλx: (λλy:

loves (x,y) (Milwaukee)) = λλx: loves (x, Milwaukee). Each

lambda symbol can bind one or more variables, corresponding

to a function that takes one of more arguments. With multiple

lambda-bound variables, expressions may be nested, and then

evaluated from the inside out, or a single lambda can bind mul-

tiple variables, in which case the order of values will determine

to which variable they are bound, proceeding from left to right.

Syntax for creating lambda expressions exists in Python, as

“lambda”, and in NLTK, using a slash operator, “\”. Figure 5.11

shows what happens when lambdas with multiple variables ver-

sus multiple nested single variable lambdas are reduced using the

NLTK lambda-reduction function, “simplify()”: in each example,
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x1 is the unreduced lamda expression and x2 is the equivalent

reduced, and we show their equality explicitly.

Figure 5.11 Examples of Lambda Expressions from NLTK HowTo nltk.logic

There are two special cases. If the sentence within the scope of

a lambda variable includes the same variable as one in its argu-

ment, then the variables in the argument should be renamed to

eliminate the clash. The other special case is when the expression

within the scope of a lambda involves what is known as “inten-

sionality”. Sentences that talk about things that might not be true

in the world right now, such as statements about the past, state-

ments that include a modal operator (e.g., “it is possible”), state-

ments that include counterfactuals, and statements of “belief”,

such as “Rex believes that the cat is hungry.” all require special

care to separate what is true in the world versus some context

of an alternate time, of the mental state of some agent, etc. Since

the logics for these are quite complex and the circumstances for

needing them rare, here we will consider only sentences that

do not involve intensionality. In fact, the complexity of repre-

senting intensional contexts in logic is one of the reasons that

researchers cite for using graph-based representations (which we

consider later), as graphs can be partitioned to define different

contexts explicitly. Figure 5.12 shows some example mappings
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used for compositional semantics and the lambda reductions

used to reach the final form.

5.3.2.1 Linguistic and Logical Magic

Note that to combine multiple predicates at the same level via

conjunction one must introduce a function to combine their

semantics. Here we will call that function UNIFY_AND_CON-

JOIN. The intended result is to replace the variables in the pred-

icates with the same (unique) lambda variable and to connect

them using a conjunction symbol (and). The lambda variable will

be used to substitute a variable from some other part of the sen-

tence when combined with the conjunction.

Figure 5.12 Examples of lambda reduction using ad hoc functions to unify
variables and raise conjunctions

Function with example parameters Result

UNIFY_AND_CONJOIN((x, P1(x)), (y, P2(y))) (λx1, [P1(x1) and P2(x1)])

RAISE_QUANT([S X NP Y]) [S NP [S X ei Y]]

RAISE_INFL([S NP INFL X]) [ S INFL [S NP X ]]

ONLY_ONE(y,P(y)) Ǝy P(y) and ∀z P(z) ? x = y

Other necessary bits of magic include functions for raising quan-

tifiers and negation (NEG) and tense (called “INFL”) to the front

of an expression. Raising INFL also assumes that either there

were explicit words, such as “not” or “did”, or that the parser cre-

ates “fake” words for ones given as a prefix (e.g., un-) or suffix

(e.g., -ed) that it puts ahead of the verb. We can take the same

approach when FOL is tricky, such as using equality to say that

“there exists only one” of something. Figure 5.12 shows the argu-

ments and results for several special functions that we might use

to make a semantics for sentences based on logic more composi-

tional.

In a logic, we must also assume that we represent verbs using

a precise number of arguments in a precise order. As an alter-
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native, one could represent the semantics of verbs by adding a

term to represent the event and conjoining separate predicates

for each of the semantic roles as in: λλx: λλy: λλz: ∃∃ ev1: [gives (ev1,

x,y, z) and agent(ev1,x) and recipient(ev1,y) and theme(ev1,z)].

Figure 5.13 shows the mapping between many common types of

expressions in natural language, and a representation in a first

order logic that includes lambda expressions.
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Figure 5.13 Example mapping between natural language types and logical types

Natural language
types Logical type

Proper noun A term expressed as either a constant, e.g., Ashley or a
functional expression, e.g., named_entity(‘Ashley’)

Adjectives and com-
mon nouns that occur
with determiners

Lambda expressions with one variable: λx: cat (x), λx:
grey(x),

Determiner
Lambda expressions with quantifiers, e.g., “a” = λx:Ǝy x(y)
where the later substitution with a noun provides the
predicate symbol. See below.

Noun phrase of: DT
JJ NN

Where
if DT = a then Q y is

Ǝy
if DT = all then Qy

is ∀y
if DT = the then Qy

P(y)
is ONLY_ONE(y,

P(y)))

A quantified expression, e.g. for “a grey cat” which would
be ∃ y [grey(y) and cat (y)] obtained as follows:
λx: Q y x(y) (UNIFY_AND_CONJOIN(SEM(JJ),SEM(NN)))
λx: ∃y: x(y) (UNIFY_AND_CONJOIN((x, grey(x)), (y, cat (y))))
λx: ∃y x(y) (λx1, [grey(x1) and cat (x1)])
∃ y (λx1, [grey(x1) and cat (x1)]) (y)
∃ y [grey(y) and cat (y)]

Noun phrase with rel-
ative clause e.g. DT
NN that S

A quantified expression, e.g., for “a cat that ate a big
mouse” which would be λx: Q y x(y) (UNIFY_AND_CON-
JOIN(SEM(NN),SEM(S)) obtained as follows:
λx:Ǝy x(y) (UNIFY_AND_CONJOIN((x1, cat(x1)), (x2,Ǝz

[big(z) and mouse (z) and ate(x2,z)])))
λx:Ǝy x(y) (λu cat(u) andƎz [big(z) and mouse (z) and

ate(u,z)])
Ǝy (λu cat(u) andƎz [big(z) and mouse (z) and ate(u,z)) (y)
Ǝy (cat(y) andƎz [big(z) and mouse (z) and ate(y,z)])

Verbs of N argu-
ments (including the
subject)

N nested Lambda expressions, expressed with N separate
variables, e.g., for “sleep” or “eats”
λx: sleep(x); λy: λx: eats (x,y); λz: λy: λx: gives (x, y, z)

Verb phrase (transi-
tive)

RAISE_QUANT( V
NP)

= NP [ V ei]

A lambda expression with a raised quantified expression, λx
NP [ verb (x,y) (ei)] where ei is the result of quantifier rais-
ing, e.g. for “chases a mouse” which would be
λx: (λw:Ǝy mouse(y) andchases (x,w)) (y)
λx:Ǝy mouse(y) and chases (x,y)
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Verb phrase (ditransi-
tive)

RAISE_QUANT( V
NP1 ) NP2

= NP1,
RAISE_QUANT(V
NP2)

= NP1 NP2 (V e1
e2)

A lambda expression for a quantified expression,NP1 and
[NP2 [λx verb (x, e1, e2)]] e.g., “gave a girl a book.”
λxƎy [girl(y) and [Ǝz book (z) and gave(x, y, z)]]

Conjoined VP : VP
CC VP [[VP]] and [[VP]] where [[ X]] gives the semantics of X

Sentence (NP VP)
λx: x (NP), e.g. “Ashley sleeps.”, NP = Ashley and VP = λz
sleep(z)
λx: sleep(x) (Ashley) which reduces to sleeps(Ashley)

Sentence
NP NPr1 VP where

NPr1
is a previously

raised NP

λx Qy Ry and P(x, y)(NP), e.g. “Susan owns a grey cat.”
λxƎy [grey(y) and cat (y) and owns(x, y)](Susan)
Ǝy [grey(y) and cat (y) and owns(Susan, y)

Sentence
NP NPr1 NPr2VP

where NPri
are previously

raised NP

Q1yRy and Q2z Rz and λx P(x, y, z)(NP) e.g. “Sy gave a girl a
book.”
λxƎy[girl(y) andƎz book (z) and gave(x, y, z)](Sy)
Ǝy [girl(y) andƎz book (z) and gave(Sy, y,z)]

Conjoined sentence:
S CC S [[S]] and [[S]] where [[ X]] gives the semantics of X

5.3.2.2 Referring Expressions

Pure FOL, even with lambda expressions, does not fully capture

the meaning of referring expressions such as pronouns, proper

names, and definite descriptions (such as “the cat”), when we

consider what would be needed by a database or a knowledge

base (KB). A backend representation structure must be able to

link referential expressions, such as “the cat” or “a cat”, to some

entity in the KB, either existing (“the”) or newly asserted “a”. Also,

it is not always sufficient to use a constant for named entities,

e.g., [[Susan]] = susan. Using a constant like this assumes unique-
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ness (e.g., that there is only one person named Susan), when in

reality there are millions of people who share that name. At an

abstract level, what we need is a representation of entities, dis-

tinct from the expressions (strings) used to name them and we

need functions to map between the expressions at the logical

level, with those in the underlying KB. We can express this at

the logical level by defining function symbols that invoke these

functions at the implementation level, such as Named_entity(

“Susan”) or Pronoun( “it”). Then to implement these at the back-

end we would need to define them with some new ad hoc func-

tion or database assertion or query. In Python we might build

a dictionary with dynamically created identifiers as keys and

asserted relations as values, e.g., relations[cat1] = [grey(cat1),

cat(cat1), eat(cat1, mouse1)], when “a grey cat ate a mouse” is men-

tioned. Or we might use a database language, such as Cypher,

with expressions like CREATE (susan:Person {name: ‘Susan’}) or

MATCH (:Person {name: ‘Susan’}), respectively, when Susan is

mentioned. Including KB entities within the semantics would

also require making a change to representations involving an

existential quantifier, where we remove the quantifier and sub-

stitute for the variable a new constant corresponding to the

unnamed individual for which the predicate is true. In logic

this notion is accomplished via a “skolem function”; for an NL

semantics one might use an ad hoc function to create new sym-

bols on the fly22. And, with possibly multiple symbols corre-

sponding to the same real-world entity, a logic or KB would

also need an equality operator, e.g., susan1 = susan2 or

owl.sameAs(susan1,susan2). Similar issues (and solutions) would

arise for references to entities that get their meaning from the

context, such as indexicals (“I”, “you”, “here”, or “there”) or ref-

erences that depend on time and location (“the president”, “the

teacher”). We will discuss these issues further in Chapter 7, when

we consider how multiple sentences taken together form a

coherent unit, known as a discourse.
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5.3.3 Frame Languages and Logical Equivalents

Although first order logic offers many benefits (such as well-

defined semantics and sound and complete inference strategies)

they have critical deficiencies when it comes to representing

objects, in addition to just referring to individuals as discussed

in Section 5.3.2. It is also problematic that, in FOL, all categories

and properties of objects are represented by atomic predicates.

Description logic (DL)23 provides a way of relating different

predicates as part of their definition, independent of what facts

one might assert with them. A DL knowledge base (KB) will

include expressions that specify definitions by saying that some

atomic concept is equivalent to a complex one. It will also include

expressions that give names to partial definitions by saying that

an atomic concept is subsumed by another one. Thirdly it will

assert properties of individuals. The only types of inference are

thus assertion and classification, but knowing whether one has

defined a consistent ontology is important for many disciplines.

DL systems have been used to create and manage very large

ontologies (even millions of concepts). For example, they have

been widely used in biology and medicine and many public

ontologies exist (e.g., the US NCBO Bioportal lists over 900 pub-

lic ontologies). DL systems can also provide an object-oriented

frontend to a relational database.

The syntax of DL includes three main types: concepts, roles,

and constants. In terms of the logic, concept names are unary

predicates; however we can specify complex concepts as a con-

junctions of simpler ones. Role names are binary predicates, e.g.

hasMother(robert,susan). Constants are the names of individu-

als. One can also specify restrictions on the values of roles, and

reify relations to define metaclasses and a metaclass hierarchy. In

relation to natural language constituents, common (or category)

nouns, such as “dog” are concepts; relational nouns, such as “age”,

“parent”, or “area_of_study”, are roles, and proper nouns are con-

stants.

There are four types of logical symbols: punctuation (e.g.,
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round and square brackets), positive integers, concept-forming

operators (e.g., ALL, EXISTS, FILLS, AND), and three types of

connectives (one concept is subsumed by another (d ⊆ e) ; one

concept satisfies the description of another (d ? e); and one con-

cept is equivalent to another (d ≡ e). Atomic concepts, roles, and

constants are the only “nonlogical symbols” – that is, ones that

the user defines. With these types and symbols, we can now

define the well-formed formulas of DL, as shown in Figure 5.14.

The rules define valid concepts and three types of sentences. One

can say that two concepts are equivalent, using ≡, or that one

concept is subsumed by another, using ⊆, or that a given con-

stant (an instance) satisfies the description expressed by a con-

cept, using ?.

Figure 5.14 Syntax of Description Logic

Syntax Example

Every atomic concept is a concept. cat

If r is a role and d is a concept, then [ALL r
d] is a concept. [ALL :weight cat]

If r is a role and n is an integer, then
[EXISTS n r] is a concept. [EXISTS 4 :legs]

If r is a role and c is a constant, then [FILLS
r c] is a concept. [FILLS :legs leg1]

If d1, …, dk are concepts, then so is [AND
d1, …, dk].

[AND mammal predator [EXISTS 4
:legs] [EXISTS 1 :tail]]

If d and e are concepts, then (d ≡ e) is a
sentence. four_legged ≡ [EXISTS 4 :legs]

If d and e are concepts, then (d ⊆ e) is a
sentence.

cat ⊆ four_legged

If c is a constant and d is a concept, then (c
? d) is a sentence. TardarSauce ? cat

By default, every DL ontology contains the concept “Thing” as

the globally superordinate concept, meaning that all concepts in

the ontology are subclasses of “Thing”. The quantifiers each spec-

ify particular subsets of the domain. [ALL x y] where x is a role

and y is a concept, refers to the subset of all individuals x such
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that if the pair <x, y> is in the role relation, then y is in the sub-

set corresponding to the description. [EXISTS n x] where n is an

integer is a role refers to the subset of individuals x where at least

n pairs <x,y> are in the role relation. [FILLS x y] where x is a role

and y is a constant, refers to the subset of individuals x, where the

pair x and the interpretation of the concept is in the role relation.

[AND x1 x2 ..xn] where x1 to xn are concepts, refers to the con-

junction of subsets corresponding to each of the component con-

cepts. Figure 5.15 includes examples of DL expressions for some

complex concept definitions.

Figure 5.15 Examples of a complex concept in description logic and some example
sentences

“a company with at least 7 directors, whose managers are all women with PhDs,
and whose minimum salary is $100/hr”

[AND Company
[EXISTS 7 :Director]
[ALL :Manager [AND Woman [FILLS :Degree PhD] [FILLS :MinSalary ‘$100/

hour’]]]

“A dog is among other things a mammal that is a pet and a carnivorous animal
whose voice call includes barking”

(Dog [AND Mammal Pet CarnivorousAnimal [FILLS :VoiceCall barking]])

“A FatherOfDaughters is a male with at least one child and all of whose children
are female”

(FatherOfDaughters ≡ [AND Male [EXISTS 1 :Child] [ALL :Child Female]] )

“Joe is a FatherOfDaughters and a Surgeon”
(joe → [AND FatherOfDaughters Surgeon]])

Description logics separate the knowledge one wants to repre-

sent from the implementation of underlying inference. Inference

services include asserting or classifying objects and perform-

ing queries. There is no notion of implication and there are

no explicit variables, allowing inference to be highly optimized

and efficient. Instead, inferences are implemented using struc-

ture matching and subsumption among complex concepts. One

concept will subsume all other concepts that include the same,

or more specific versions of, its constraints. These processes are
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made more efficient by first normalizing all the concept defin-

itions so that constraints appear in a canonical order and any

information about a particular role is merged together. These

aspects are handled by the ontology software systems them-

selves, rather than coded by the user.

Ontology editing tools are freely available; the most widely

used is Protégé, which claims to have over 300,000 registered

users. Protégé also allows one to export ontologies into a variety

of formats including RDF (Resource Description Frame-

work)2425 and its textual format Turtle, OWL (Web Ontology

Language)26, 27, and XML Schema28, so that the knowledge can

be integrated with rule systems or other problem solvers.

Another logical language that captures many aspects of frames

is CycL, the language used in the Cyc ontology and knowledge

base. The Cyc KB is a resource of real world knowledge in

machine-readable format. While early versions of CycL were

described as being a frame language, more recent versions are

described as a logic that supports frame-like structures and

inferences. Cycorp, started by Douglas Lenat in 1984, has been

an ongoing project for more than 35 years and they claim that it

is now the longest-lived artificial intelligence project29.

5.3.4 Compositionality using Frame Languages

Compositionality in a frame language can be achieved by map-

ping the constituent types of syntax to the concepts, roles, and

instances of a frame language. For the purposes of illustration,

we will consider the mappings from phrase types to frame

expressions provided by Graeme Hirst30 who was the first to

specify a correspondence between natural language constituents

and the syntax of a frame language, FRAIL31. Figure 5.16 shows

the mappings for the most common types of phrases. These map-

pings, like the ones described for mapping phrase constituents

to a logic using lambda expressions, were inspired by Montague

Semantics. The frame language syntax used here includes sym-

bols for variables and constants, which might name entities, the
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values of attributes, or instances (e.g., “Newton”, “black”, or

cat01); symbols for frame types, which include both entities and

actions (e.g., “cat” or “eat”); symbols for slots, which might be

properties or semantic roles (e.g., “color” or “agent”); and symbols

for frame determiners, which are functions for either storing

or querying the frame system. Well-formed frame expressions

include frame instances and frame statements (FS), where a FS

consists of a frame determiner, a variable, and a frame descriptor

that uses that variable. A frame descriptor is a frame symbol

and variable along with zero or more slot-filler pairs. A slot-

filler pair includes a slot symbol (like a role in Description Logic)

and a slot filler which can either be the name of an attribute

or a frame statement. The language supported only the storing

and retrieving of simple frame descriptions without either a uni-

versal quantifier or generalized quantifiers. More complex map-

pings between natural language expressions and frame

constructs have been provided using more expressive graph-

based approaches to frames, where the actually mapping is pro-

duced by annotating grammar rules with frame assertion and

inference operations.
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Figure 5.16 Example mappings between syntactic types and frame expression
types

Syntactic type and examples Frame expres-
sion

Examples

Determiner, “the”, “a”
Frame deter-
miner (the ?x), (a ?x)

Common noun, “cat”, ”mat” Frame (cat ?x), (mat ?x)

Pronoun, “he” Frame state-
ment, Instance

(the ?x (being ?x (gender =
male)), man87

WH Pronoun, “what”, “which” Variable ?wh

Noun phrase, “the cat” Frame state-
ment, Instance (the ?x (cat ?x)), cat01

Proper noun phrase, “Newton” Frame state-
ment, Instance

(the ?x (thing ?x (name =
Newton)), thing01

Main verb, “chase”, “sleep” Frame (chase ?x) , (sleep ?x)

Adjective, “black” Slot-filler pair (color = black)

Preposition, “on” Slot name location

Prepositional phrase, “on the
mat”

Slot-filler pair (location = mat93)

Auxiliary verb, “was” Slot-filler pair (tense = past)

Adverb, “quietly” Slot-filler pair (manner = quietly)

Verb phrase, “chase a mouse” Frame descrip-
tor

(chase ?x (patient = (a ?y
(mouse ?y))))

Clause-end punctuation, “.”, “?”
Frame deter-
miner (a ?x), (question ?x)

Sentence “The cat ate the
mouse”, “What did he eat?”

Frame state-
ment, Instance

(a ?x (eat ?x (agent = cat01)
(patient = mouse19))),
(question ?x (eat ?x (agent

= cat01)
(patient = ?wh )))

5.3.5 Graph-Based Representation Frameworks

Graph-based representation frameworks for semantics have

drawn wider attention with the commercial success of Amazon
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Alexa32. Although application developers define intents in terms

of natural language sentences, it was reported in June 2018 that

Alexa’s internal representation – before accessing the applica-

tions – would use a new graph-based framework called the

“Alexa Meaning Representation Language”33, 34. Figure 5.17

shows the graph for a request to find a restaurant that includes

a complex spatial relation “near the Sharks game”. Graph-based

representations of knowledge have had a longstanding following,

including The International Conference on Conceptual Structures,

which has origins going back to 1986. The focus of the meeting

is a semantic framework called Conceptual Graphs. Figure 5.18

shows an example by John Sowa, illustrating one of the three

possible interpretations of “Tom believes Mary wants to marry

a sailor.” along with its text-based representation in the Con-

ceptual Graph Interchange Format, part of the ISO standard for

Common Logic. Other currently active graph-based projects for

NL include the FRED machine reading project which generates

representations as RDF/OWL ontologies and linked data, and

the Cogitant project which distributed libraries for editing Con-

ceptual Graphs. There are also freely available datasets of text

annotated with CG that have been used for supervised (rein-

forcement) learning35, 36.

Figure 5.17 AMRL Graph for “Find restaurants near the Sharks game” (Image
from Perera et al 2018)

The Conceptual Graph shown in Figure 5.18 shows how to cap-

ture a resolved ambiguity about the existence of “a sailor”, which

might be in the real world, or possibly just one agent’s belief

context. The graph and its CGIF equivalent express that it is in

both Tom and Mary’s belief context, but not necessarily the real
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world. Conceptual graphs have also been used to represent sen-

tences in legal statutes, which can have complex quantification in

the form of exceptions or exclusions, e.g., “The Plaintiff by a war-

ranty deed conveyed the land to the Defendant, save and except

for all oil, gas and other minerals.”, which might be handled by

creating a negated type restriction or a negated context.

Figure 5.18 Conceptual Graph illustration and CGIF notation for one scoping of
“Tom believes Mary wants to marry a sailor.”

Graph-based semantic representation for Natural Language have

a long history, including work by many pioneers of Computer

Science and Artificial Intelligence including John Sowa37, Roger

Schank, Ronald Brachman, and Stuart Shapiro38, who them-

selves drew inspiration from the work of Charles S. Pierce in the

1880’s on “Existential Graphs” and graph-based inference. The

advantages that graphs offer over logics are that the mapping

of natural language sentences to graphs can be more direct and

structure sharing can be used to make it clear when the interpre-

tation of two expressions correspond to the same entity, which

allows quantifiers to span multiple clauses. Graphs can also be

more expressive, while preserving the sound inference of logic.

One can distinguish the name of a concept or instance from the
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words that were used in an utterance. Also, many known restric-

tions of first order logic, such as its limited set of quantifiers and

connectives, the reliance on implication and inference to express

class membership, the limited scope of quantifiers, and difficul-

ties in representing questions and requests can all be addressed

in a graphical representation. Other scope issues, such as subjec-

tive context can also be disambiguated.

The SNePS framework has been used to address represen-

tations of a variety of complex quantifiers, connectives, and

actions, which are described in The SNePS Case Frame Dictionary

and related papers. For example, Figure 5.19 shows how a graph

might represent the sentence “All men are mortal” without impli-

cation (or its equivalent as disjunction), how a graph might repre-

sent the correct quantifier scope in the expression “Every farmer

that owns a donkey beats it.”, and a graph for expressing a quan-

tifier that means that “at least I and at most j of a given set

of statements are true”. SNePS also included a mechanism for

embedding procedural semantics, such as using an iteration

mechanism to express a concept like, “While the knob is turned,

open the door”.
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Figure 5.19 Example of Analog graphs for representing “All men are mortal” (top);
“Every farmer that owns a donkey beats it” (middle); the complex quantifier

“AndOr” where at least I and at most j are true (bottom)

The most recent projects based on SNePS include an imple-

mentation using the Lisp-like programming language, Clojure,

known as CSNePS or Inference Graphs39, 40. It is being used

to represent clinical practice guidelines41. Clinical guidelines are

statements like “Fluoxetine (20–80 mg/day) should be consid-

ered for the treatment of patients with fibromyalgia.” 42, which

are disseminated in medical journals and the websites of pro-

fessional organizations and national health agencies, such as the

U.S. Preventive Services Task Force and the U.S. Agency for
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Health Research Quality (AHRQ), respectively as sentences, but

must be mapped onto some actionable format if they are to be

used to generate notifications within a clinical decision support

system or to automatically embed so-called “infobuttons” within

electronic medical records43, 44.

5.4 SUMMARY

This chapter discussed the kinds of information one would want

a semantics for natural language to include, several computa-

tional approaches to representing this information, and methods

for mapping between sequences of words and representations.

From a conceptual perspective, the four main types of informa-

tion that one would want to capture are: 1) the entities that are

being described, 2) the types of events that are being mentioned

and the roles that the entities fulfill with respect to the event,

3) the propositional attitude that a sentence expresses, such as a

statement, question, or request, and 4) the intended word senses

for each occurrence of a word in a sentence. To capture all of

these elements in a domain-independent way is to create what

is known as a “deep semantics”, which is usually expressed in

a logic (or comparable framework such as a graph or ontol-

ogy language). Such a semantics would allow one to distinguish

between differences among what is asserted as true in the real

world, what agents are asserting about their own beliefs, and

what beliefs they are ascribing to others. These differences would

be essential to understanding complex texts such as personal his-

tories or legal briefs.

For some applications, such as supporting NL queries to a data-

base, deep meaning is not required and interpretation can com-

prise finding the command that best represents the content of a

natural language expression. In these cases, it is sufficient to cre-

ate a “procedural semantics” that maps natural language expres-

sions directly onto a database query language or the API of some

backend software system. Mapping to procedure calls and
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queries shifts the burden of resolving ambiguous expressions

onto the natural language processing components, whereas with

a domain independent semantics one can leave the representa-

tion ambiguous and allow the backend application to make deci-

sions based on its understanding of the user’s tasks and goals.

Another form of shallow understanding is to consider different

ways we might label texts, such as “grammatical” versus

“ungrammatical” or “positive” versus “negative”, etc. While there

are an innumerable number of ways we might label text, a few

such classification problems have been used as benchmark tasks

for comparing the generality of language models, espcially ones

that use deep learning to implement an entire NLP pipeline.

Before we continue our discussion of classical levels of lan-

guage processing, such as discouse and dialog (which might be

considered subareas of pragmatics), we will first discuss the

classification tasks that are now considered benchmarks for

NLP systems.
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CHAPTER 6.

BENCHMARK TASKS FOR LANGUAGE MODELLING

This chapter assesses the progress of Natural Language Process-

ing as a scientific discipline. We do so by considering applica-

tions of NLP that test the generality of a system or language

model. The field of NLP comprises both practical applications

and basic science.

Basic science refers to investigations where the primary goal

is to predict phenomena or to understand nature. Basic science

outcomes help us to develop technologies that alter events or

outcomes. Early qualitative science NLP involved researchers

looking at small examples of language phenomena and using

them to better understand how human language processing

works. This research has looked at what people do well and

also when they make mistakes and seeing under what conditions

computation models exhibit similar behavior. Inspiration for

computational approaches comes from research in other disci-

plines, primarily psycholinguistics. Early work involved asking

people to make judgements about whether they think a sentence

is grammatical. More modern approaches use biosensors to

track movements of the eyes or event-related potentials of the

brain, as they process ambiguous sentences or resolve long dis-

tance dependencies, such as referring expressions1.

Basic science for NLP also includes developing models of

human language. Language modeling involves learning parame-

ters for complex mathematical expressions that measure or pre-
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dict the likelihood of occurrences of a word or sentence for a

given context. These models are used to implement methods for

solving low-level NLP tasks that form the basis of more com-

plex software applications. Four important examples of low-level

NLP tasks include:

1. Labelling language units or pairs of units according to

their grammaticality,

2. Labelling units with the type of sentiment or emotion they

express

3. Labelling pairs of units as two whether they are semanti-

cally similar and

4. Labelling pairs of units as to their logical relationship.

They are sometimes called “benchmark” tasks for language pro-

cessing because they are tasks that can be defined independent

of a specific computational approach and thus offer a way to

make them comparable.2 For example, having a method of cor-

rectly classifying sentences as ungrammatical might be useful for

helping writers, teaching second language learners, or providing

input to a classification-based parser. To date, there is no one

modelling approach that can handle all these benchmark tasks

well, which is a sign that the field of NLP has not yet solved the

problem of creating general-purpose models of human language.

In this chapter, we will consider each of the four tasks.

6.1 GRAMMATICALITY ANALYSIS

Grammaticality refers to whether an expression obeys the

accepted syntactic conventions of a language, independent of

whether those sentences make “sense”. A sentence can be both

grammatical and meaningless; a classic example is “Colorless

green ideas sleep furiously.”3, 4. Grammaticality judgements are

binary (yes or no). Since grammars are descriptions developed by

observing the language of native speakers, decisions about what
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counts as grammatical must also come from native speakers of a

language or expert observations. Grammaticality analysis can be

used directly, such as for tools to support writing or to grade the

writing of language learners, or it can be used to generate fea-

tures for other tasks, such as assessing some cognitive disorders

(e.g., the frequency of ungrammaticality has been associated with

particular subtypes of autism spectrum disorder5).

Approaches to grammaticality involve either comparing a

given sentence against some model of perfect grammar or com-

paring a given sentence against some model of common errors,

or a combination6. Models of perfect grammar can consist of

rules that enforce syntactic constraints at the sentence level.

These constraints include that the subject and verb must agree

(e.g., both be plural or singular); the pronoun must be correct

form (case) for its role in the sentence (e.g., a subject “I” versus

the object “me”); the noun must agree with its determiner (e.g.,

“This book” but not “These book”); the verb must in in the cor-

rect tense given its role (e.g. the present form of “be” expects the

present participle, as in “am/is/are walking”); conjoined phrases

should all have the same (parallel) structure; and words that take

arguments, that is create requirements for the co-occurrence of

other constructs, must occur with the correct pattern of argu-

ments. There are also rules about the location of apostrophe

when forming the possessive. Models of common errors can be

rules that describe examples of violations of syntactic constraints

and also rules for detecting problems that are primarily seman-

tic, such as dangling modifiers, which are constructions where

the entity being modified is either missing or ambiguous.

There are also specialized models of common errors, for dif-

ferent types of learners, such as children or people who are learn-

ing a second language. Children often have difficulty with

homophones (such as “there”, “their” and “they’re”) or near-

homophones (such as “then” and “than”) which sound similar, but

are spelled differently. Second language learners have errors that

occur when they mistakenly apply grammatical constraints from
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their first language that do not hold in the second language. For

example, native speakers of Arabic sometimes omit the present

form of “be” before an adjective or an indefinite article before a

noun, because they are not used in these constructions in Arabic.

One of the first automated grammar checkers was EPISTLE7.

It takes what we would now consider to be a standard relaxation

approach. The algorithm first attempts to parse a sentence while

enforcing grammaticality constraints expressed as rules written

by experts and then selectively relaxing some of the constraints,

while noting the type and location of a violated condition. (The

reason to look for known types of errors is to be able to decide

whether a parser failed to derive a sentence because it lacks cov-

erage or failed because the sentence being parsed has an error.)

An alternative rule-based approach is based on extending a rule-

based grammar to include explicit “malrules” that cover known

types of errors and are marked with extra features that flag them

as errors8, 9. For example, a malrule might say that an erroneous

noun phrase is one with a plural determiner and a singular head

noun.

Both relaxation and malrules rely on search to find a rule that

matches the suspect sentences. More recent approaches to gram-

maticality analysis use classification rather than search to deter-

mine the existence and type of the error. One approach is to

train models using a large corpus of grammatical text, then score

unseen examples with a measure of their likelihood of being one

of the training sentences and applying thresholds of similarity

to determine if a writer’s usage is correct “enough” (that is close

enough to a predicted example) given the context. More recent

approaches use a corpus of erroneous examples to train mod-

els and then classify unseen sentences as one of the erroneous

ones. Figure 6.1 shows some examples of errors found in writing

assignments submitted by learners of English.
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Figure 6.1 Grammatical errors annotated in NUCLE with ERRANT from Ng et al
(2014)

Type Description Example

Vt Verb tense
Medical technology during that time
[is→was] not advanced enough to cure
him.

Vm Verb modal
Although the problem [would→may] not
be serious, people [would→might] still be
afraid.

V0 Missing verb
However, there are also a great number of
people [who → who are] against this tech-
nology.

Vform Verb form
A study in 2010 [shown → showed] that
patients recover faster when surrounded
by family members.

SVA Subject-verb agree-
ment

The benefits of disclosing genetic risk
information [outweighs → outweigh] the
costs.

ArtOrDet Article or deter-
miner

It is obvious to see that [internet → the
internet] saves people time and also con-
nects people globally.

Nn Noun number A carrier may consider not having any
[child → children] after getting married.

Npos Noun possessive
Someone should tell the [carriers → car-
rier’s] relatives about the genetic problem.

Pform Pronoun form
A couple should run a few tests to see if
[their → they] have any genetic diseases
beforehand.

Pref Pronoun reference
It is everyone’s duty to ensure that [he or
she → they] undergo regular health
checks.

Prep Preposition
This essay will [discuss about → discuss]
whether a carrier should tell his relatives
or not.

Wci Wrong collocation/
idiom

Early examination is [healthy → advisable]
and will cast away unwanted doubts.

Wa Acronyms After [WOWII → World War II], the popu-
lation of China decreased rapidly.

Wform Word form The sense of [guilty → guilt] can be more
than expected.

Wtone
Tone (formal/infor-
mal)

[It’s → It is] our family and relatives that
bring us up.

Srun Run-on sentences,
comma splices

The issue is highly [debatable, a → debat-
able. A] genetic risk could come from
either side of the family.

Smod Dangling modifiers
[Undeniable, → It is undeniable that] it
becomes addictive when we spend more
time socializing virtually.

Spar Parallelism
We must pay attention to this information
and [assisting → assist] those who are at
risk.
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Sfrag Sentence fragment However, from the ethical point of view.

Ssub Subordinate clause
This is an issue [needs → that needs] to be
addressed.

WOinc
Incorrect word
order

Someone having what kind of disease →
What kind of disease someone [has] is a
matter of their own privacy.

WOadv
Incorrect adjective/
adverb order

In conclusion, [personally I → I personally]
feel that it is important to tell one’s family
members.

Trans Linking words/
phrases

It is sometimes hard to find [out → out if]
one has this disease.

Mec
Spelling, punctua-
tion, capitalization,
etc.

This knowledge [maybe relavant → may be
relevant] to them.

Rloc− Redundancy
It is up to the [patient’s own choice →
patient] to disclose information.

Cit Citation Poor citation practice.

Others Other errors
An error that does not fit into any other
category but can still be corrected.

Um Unclear meaning
Genetic disease has a close relationship
with the born gene. (i.e., no correction pos-
sible without further clarification.)

Resources for building models of correct grammar from data

include syntactic tree banks (which are collections of sentences

annotated with parse trees that have been vetted by experts)10.

Resources for building models of errors include sentences col-

lected from published articles by trained scholars of linguistics

that include examples of grammatical or ungrammatical sen-

tences. One such collection is the Corpus of Linguistic Accept-

ability11. Other collections of erroneous sentences include the

NUS Corpus of Learner English (NUCLE)12, the Cambridge

English Write & Improve (W&I) corpus, and the LOCNESS cor-

pus, which are collections of essays written by second language

learners that have been annotated. Another resource is ERRANT,

a grammatical ERRor ANnotation Toolkit designed to automati-

cally extract edits from parallel original and corrected sentences

and classify them according to the type of error. Figure 6.1 shows

28 error types along with examples for each from the NUCLE

corpus that have been annotated using ERRANT13.

6.2 SENTIMENT ANALYSIS AND EMOTION
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RECOGNITION

Sentiment Analysis attempts to capture the emotional aspects of

language including opinions and evaluation. It originated from

work that classified sentences as subjective or objective based on

the particular words that they contain14,15,16,17. Particular words

express the polarity of opinions expressed by a language unit,

which might be positive (e.g., “liking”), negative (e.g., “not lik-

ing”), or neutral, which is often expressed using adjectives, such

as “beautiful” vs “ugly”. Sentences are considered “objective” if

they do not include any expressed opinions. Figure 6.2 shows

examples of subjective and objective sentences. The sentence on

the left is considered subjective because the word “fascinating” is

considered positive (in contrast to saying “boring” or “trite”); the

sentence on the right is objective because “increase” is considered

factual (without implying the increase was too much or too lit-

tle).

Figure 6.2 Examples of subjective versus objective sentences

Subjective sentence Objective sentence

At several different layers, it’s
a fascinating tale.

Bell Industries Inc. increased its quarterly to 10
cents from 7 cents a share.

Sentiment often involves just labelling the general polarity,

which might be positive, negative, or neutral. More fine-grained

approaches classify particular levels of sentiment. For example,

the Stanford Sentiment Treebank uses continuous values rang-

ing from 1 to 25, where 1 is the most negative and 25 is the

most positive. Figure 3 below shows some examples (taken from

movie reviews) and the scores that the sentences received using

their algorithm.
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Figure 6.3 Stanford Sentiment Treebank example score values

Example Score (rounded)

The performances are an absolute joy. 21

Yet the act is still charming here 18

A big fat pain 5

Something must have been lost in the translation 7

Beyond sentiment, there are also approaches that try to capture

various types of emotion, such as anger, excitement, fear, joy,

sadness, etc. These tasks are not included in the benchmarks, but

might be in the future. Training data would be more difficult to

create as labelling examples with such categories requires spe-

cialized expertise. However, associating words with emotions

has long been part of the qualitative analysis of human language

performed by some psychologists18,19 and incorporated into

some tools, such as Linguistic Inquiry and Word Count

(LIWC)20.

Freely available tools for sentiment analysis include VADER,

TextBlob, and Sentistrength. Some of the most recent open

source tools use Deep Learning (e.g., from the Open Data Hub).

Resources for building sentiment analysis include movie and

product reviews in the public domain, which typically include an

explicit rating that can be mapped to a sentiment polarity value.

Examples of public standardized corpora includes the Stanford

Sentiment Treebank21 which was derived from a sentence-level

corpus of movie reviews22. The LIWC tools mentioned above are

available for a licensing fee.

6.3 SEMANTIC SIMILARITY

Semantic similarity, also called semantic textual similarity, is the

notion that two expressions mean approximately the same thing

(e.g., they are paraphrases of each other). Similarity is thus a

symmetric relationship – when comparing two units neither

would be more general or specific than the other. Similarity can
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arise at the word level, through the synonyms, or at the sen-

tence level, where one might reorder the parts of a conjunction

or substitute an active construction for a passive one. Being able

to detect when two expressions mean “nearly” the same thing is

useful for assessing whether a student has answered a test ques-

tion correctly, or when trying to determine the intent of a ques-

tion or command without requiring the designer to list every

possible expression explicitly. Systems that require one to say

things in exactly one way make it difficult for users to learn or

remember the required phrasing.

Systems that map expressions onto sentences in a formal logic

to test subsumption (which they refer to as classification infer-

ence) are performing a type of semantic similarity analysis. A

rule-based approach would create a deep-semantics (such as an

expression in first order logic or description logic) and then test

whether a pair of concepts (A, B) are equivalent, that is, both A

⊆ B and B ⊆ A hold. Today, semantic similarity is a task that can

be learned from data that includes pairs of expressions that have

been previously deemed to be similar. Figure 6.4 includes some

examples of similarity judgements given by staff at Microsoft.

Figure 6.4 Examples of similarity judgements from the Microsoft Research
Paraphrase Corpus (2005)

Sentence 1 Sentence 2 Similarity
class

Amrozi accused his brother,
whom he called “the witness”, of
deliberately distorting his
evidence.

Referring to him as only “the
witness”, Amrozi accused his
brother of deliberately distorting
his evidence.

Yes

Yucaipa owned Dominick’s
before selling the chain to
Safeway in 1998 for $2.5 billion.

Yucaipa bought Dominick’s in
1995 for $693 million and sold it
to Safeway for $1.8 billion in
1998.

No

Three resources for semantic similarity that have been proposed

as a standard for evaluating work on similarity are: The

Microsoft Research Paraphrase Corpus23, the Quora Question

Pairs dataset24, 25, and the Semantic Similarity Benchmark cor-
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pus from SemEval 201726. The first two of these corpora include

text collected from online news and questions posted to a com-

munity question answering website where equivalence judge-

ments were provided by staff at the respective organizations (e.g.,

Microsoft and Quora). The SemEval data includes video and

image captions created via crowdsourcing and judged by orga-

nizers and participants of the conference. One newer dataset

that may prove useful is the multi-domain question rewriting

dataset, which was created from Stack Exchange question edit

histories by researchers at Google, University of Chicago, and

Toyota Technological Institute27.

6.4 TEXTUAL ENTAILMENT

Textual entailment, also known as natural language inference,

is an approximation of real inference that has been formalized

to allow for using classification as a solution. There are three

categories: a given text either entails another text, contradicts

another text, or neither, which is classified as “neutral”. (There

are examples in Figure 6.5.) By convention, the entailing text is

known as “the text” or “the premise” and the other text is known

as “the hypothesis”. A search-based system might create a seman-

tics using first order logic and apply a theorem prover. A more

efficient approach would use a graph-based representation, such

as a subsumption hierarchy. Recent work by Young et al. (2014)

explores combining a statistical measure (conditional probability

or mutual information) and a graph structure, to form a hybrid

structure that they call a Denotation Graph28.

Classification-based approaches for Textual Entailment have

also been devised, using a training set where items have both

generated and then labelled by hand for different entailment

relations, typically by crowdsourcing, using the Amazon

Mechanical Turk platform. The conventionally used entailment

categories for this approach are defined as follows:

Entailment: the hypothesis states something that is definitely

correct about the situation or event in the premise.
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Neutral: the hypothesis states something that might be correct

about the situation or event in the premise.

Contradiction: the hypothesis states something that is defi-

nitely incorrect about the situation or event in the premise.

The collections of sentence pairs that have been created are

designed to exemplify several known sources of entailment, from

low-level word meanings and sentence structure to high-level

reasoning and application of world knowledge. They capture

four broad categories of phenomena: lexical semantics, predi-

cate-argument structure, logic, and world and common sense

knowledge, where each category may have several subtypes. We

will now consider the general idea for each.

Lexical semantics or word meaning includes entailments

based on concept abstraction or exclusivity, such as that a cat is a

type of mammal and a cat is not a dog. It also includes morpho-

logical negation (e.g. agree vs. disagree, happy vs. unhappy, etc).

It also includes entailments based on verbs, that in normal usage

warrant certain inferences, such as saying “I stopped doing X”

entails one was doing X previously and saying “I recognize that

X” entails X. Also, saying “The cat is fat.” entails that the cat exists.

(Linguists sometimes refer to these various types of expressions

as presuppositions or factives.)

Predicate-argument structure includes a verb and its subject

and object, which may tell you who did something and what was

acted upon (their semantic role). The order of the roles depends

on the syntax. For example both “The cat broke the vase.” and

“The vase was broken by the cat.” entail that the vase broke.

Logic includes entailments that may arise because of connec-

tives (conjunction, disjunction), negation, double negation, con-

ditionals, and quantifiers. Logic also includes entailments based

on specific types of entities, such as numbers and intervals of

time, which have an associated magnitude and sequential order,

and operators defined on them, such as less than or greater than,

and before or after. Logic-based entailments (mostly) follow the

semantics of mathematical logic. For example, “the cat sat on the
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mat and slept” entails “the cat slept” and “the cat slept” entails “the

cat slept or the cat ate”, but “the cat slept or ate” is neutral about

“the cat slept”. Conditionals include sentences like “if it is raining,

the grass will be wet”, which would not entail that “the grass is

wet” or “it is raining” or even “it is raining and the grass is wet”;

however, a complex conditional such as “It is raining and if it is

raining, then the grass will be wet” would entail that “the grass is

wet.” Quantifiers of logic include the universal (all) and the exis-

tential (some) which create entailments based on their semantics,

e.g., “All cats have fur.” entails “my cat has fur” and “my cat likes

fish” entails that “some cats like fish”. Natural language includes

additional quantifiers such as “most” or “most X in the Y”. Deter-

mining the entailments of these quantifiers requires judgements

that combine an understanding of their general meaning and

world or common sense knowledge.

World and common sense knowledge includes entailment

relations based on knowledge of history, geography, law, politics,

science, technology, culture, other aspects of human experience.

An example might be that “Milwaukee has some beautiful parks.”

entails that “Wisconsin has some beautiful parks.” Common

sense includes entailment relations that are not exactly factual,

but do not depend on either cultural or educational background.

For example, “A girl was making snow angels” entails “a girl

is playing in the snow” and “the grass is wet” entails “it might

have rained”. Some examples from the Stanford Natural Lan-

guage Inference dataset, showing the Text-Hypothesis pairs and

the crowdsourced inference type, are shown in Figure 6.5
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Figure 6.5 Examples of textual entailment types

Text Hypothesis Class label

A man inspects the uniform of a
figure in some East Asian coun-
try.

The man is sleeping contradiction

An older and younger man smil-
ing.

Two men are smiling and laugh-
ing at the cats playing on the
floor.

neutral

A black race car starts up in
front of a crowd of people.

A man is driving down a lonely
road. contradiction

A soccer game with multiple
males playing. Some men are playing a sport. entailment

A smiling costumed woman is
holding an umbrella.

A happy woman in a fairy cos-
tume holds an umbrella.

neutral

Textual entailment recognition is a classification task that can

support several different software applications including text

summarization, question answering, information retrieval, and

machine translation. For example, summaries can be shortened

by removing any sentences that are already entailed by other sen-

tences in the summary. In question answering, any acceptable

candidate answer found in a source document must entail the

ideal answer, which we are presumed to already know. In infor-

mation retrieval, search criteria might be given in terms of sen-

tences that the desired documents must entail. Textual

entailment being independent of any application has also been

used as a benchmark task for natural language, one that could

be used to evaluate and compare the effectiveness of natural lan-

guage models across a variety of applications. Currently there

are a number of software tools and datasets available for creating

and evaluating systems for textual entailments. Functions for

performing textual entailment are included in (or available for)

AllenNLP and spaCy.

Some resources that have been proposed as a standard for

evaluation include: the Multi-Genre Natural Language Inference

Corpus, which includes examples drawn from transcribed

speech, popular fiction, and government reports which were
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labelled via crowdsourcing29; the Stanford Natural Language

Inference corpus30; the Stanford Question Answering Dataset31;

the Recognizing Textual Entailment datasets, which come from

a series of annual challenges, first held in 200432; and the data

from the Winograd Schema Challenge33.

6.5 SUMMARY

Four tasks have emerged as benchmarks tasks for language mod-

elling. These tasks are grammaticality analysis, sentiment analy-

sis, semantic textual similarity, and recognizing textual

entailment. Language models can address these tasks by training

on data that represents the set of class types for that task. Much

of this data was created “naturally”, for example extracted from

collections of student writing graded by instructors, from online

reviews of products, or from captions posted to online image

databases (e.g., Flickr). When examples of entailments did not

otherwise exist, the data has been crowdsourced. These bench-

mark tasks, while not always useful on their own, are useful

for many downstream applications. For example, a training sys-

tem might evaluate the similarity or entailment relation of the

response to an expected answer. A question-answering system

might use textual similarity to group together related questions.

A combination of grammaticality and textual similarity would be

helpful for assessing or improving writing, for example to iden-

tify grammatical mistakes, excessive repetition, or potential pla-

giarism. Single or cross-language similarity classification might

be used as an objective function for training systems that sum-

marize texts or that translate from one language to another.

In addition to supporting better applications, benchmark tasks

serve as a guiding force for advancing the basic science of NLP.

Language models and the architectures for constructing them

are becoming more powerful and more complex every day. To

compare alternatives or to measure progress over time, com-

mon datasets and tasks like the ones discussed in this chapter

are often used. Because these tasks do not depend on a particu-
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lar domain, such as medicine or manufacturing, they are also

used to test generality. Already, some have become concerned

that these tasks are not sufficiently general or appropriate, how-

ever34. To increase generality, additional benchmarks have been

proposed, e.g., SuperGLUE35. Concerns about how to address

the ethics of creating language models have yet to be resolved

and so each NLP projectmust be careful to avoid or reduce

potentially harmful consequences.
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CHAPTER 7.

DISCOURSE AND DIALOG

In this chapter, we will consider language above the level of a

single clause. In conversation, people communicate over several

exchanges, depending on what they are trying to do or whether

they think they have been understood. In writing, people con-

struct paragraphs, sections, chapters, books, etc., organizing the

content into aggregated units of varying sizes to help present

their thoughts in a way that will be understandable and convinc-

ing to their intended audience.

Within NLP, the term used to describe aggregated forms of

language is discourse. The term encompasses both written text,

such as stories, and spoken communication among multiple peo-

ple or artificial agents. When the communication involves mul-

tiple parties engaging in interactive communication, we refer to

these extended exchanges as dialog.

NLP pipelines are applied to discourse for the following rep-

resentative tasks (among others):

• To extract information,

• To find documents or information within larger collec-

tions,

• To convey distributed, structured information, such as

found in a database, in a more understandable form, and

• To translate from one form or language into another.
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Computational models of dialog are also used to manage com-

plex devices or to elicit social behaviors from people (e.g., as a

diagnostic, monitoring, or treatment tool for depression1). The

participants in a dialog can all be people, in which case the role of

NLP might be to extract knowledge from their interaction, or to

provide mediating services. Or, the parties might be a heteroge-

neous group of people and an automated system, such as a chat-

bot. Because dialog involves multiple parties, it brings additional

complexity to manage the flow of control among participants

and also to assure that participants’ understandings of the dia-

log are similar. Applications of dialog include interactive voice

response systems (IVR), question answering systems, chatbots,

and information retrieval systems. Applications of discourse that

do not require interaction include text summarization systems

and machine translation systems.

When we think of the meaning of discourse, we might think

about the “story” that the discourse is trying to convey. Under-

standing a story requires a deeper level of understanding than

found in the benchmark tasks we discussed in an earlier chapter.

Story understanding was among the tasks that concerned many

AI and NLP researchers in the 1970’s, before access to large elec-

tronic corpora became widely available2. Some of the key ideas

of understanding a story are similar to what might be captured

in a deep, logic-based semantics, as we discussed in Chapter 5,

including wanting to know what people or things are involved

in the story. (In a logic, these would be referents associated with

logical terms.) One might also want to know the various sorts of

properties and relations that hold among characters, objects, and

events, for example, where things are located, when events hap-

pened, what caused the events to happen, and why the charac-

ters did what they did. In a 2020 article in the MIT Technology

Review, these elements of story understanding were noted as

being totally missed by current research in natural language pro-

cessing3. One reason that story understanding remains unsolved

is that these tasks were found to be much more difficult than
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anticipated, were hard to evaluate, and did not generalize from

one application to another. Thus, with rare exception, the con-

sensus view became that it was better to leave these problems to

future work4. One notable exception has been the work of Doug

Lenat, and others at Cyc.com (originally Cycorp), who have been

building deep representations of human knowledge since 1984.

There is an opportunity to move forward again, by considering

approaches that combine the evidence provided by data with the

data abstractions provided by knowledge-based methods, such

as ontologies and inference.

All types of multi-sentence discourse share certain properties.

In a non-interactive discourse, there is a singular narrative voice,

or perspective, that represents the author(s) of the document (or

one of the characters in the story). The sequences of clauses and

aggregated structures form coherent units so that the structure

is identifiable. There are also identifiable meaning relationships

that hold between units of discourse, such as between a cause and

effect. Evidence that these structures exist includes the author’s

use of explicit words like “because” or “and”, but sometimes the

relations are just left to be inferred based on their close proxim-

ity and the expectations shared by writers and readers that they

exist. Within a discourse unit, authors or speakers can make ref-

erences to entities and expressions, even ones that span beyond

a single clause. Understanding a discourse requires being able to

recover these relationships and references; generating coherent

discourse requires selecting appropriate referring expressions to

use.

This chapter considers the meaning, structure, and coherence

of discourse and dialog. It includes tasks of interpretation and

generation and some applications. We will start by considering

some general challenges for systems that process discourse and

dialog.We will consider additional applications in Chapter 8 (on

Question Answering) and Chapter 9 (on Natural Language Gen-

eration).
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7.1 COMPUTATIONAL CHALLENGES FOR DISCOURSE

PROCESSING

The reason to consider discourse and dialog rather than just the

sentences that comprise them is that sometimes information is

presented or requested over multiple sentences, and we want to

recognize various phrases or relations among them that identify

the who, what, when, where and why of the event. For discourse,

we might extract information found in articles in newspapers or

magazines or the chapters of books and store it in tables that

are more easily searchable. For dialog, we might want to extract

information from interactions to achieve tasks, such as book-

ing travel or making a restaurant reservation, or tutoring a stu-

dent5. Or, we might want to be able to identify direct or implied

requests within purely social conversations that unfold without

specified goals or roles among the participants. Many of these

tasks have been the focus of recent dialog state tracking and dia-

log system technology challenges6, 7

Figure 7.1 Fragment of text from MUC-3 challenge dataset

A MEDIUM-SIZED BOMB EXPLODED SHORTLY BEFORE 1700 AT THE PRESTO
INSTALLATIONS LOCATED ON [WORDS INDISTINCT] AND PLAYA AVENUE.
APPROXIMATELY 35 PEOPLE WER~! INSIDE THE RESTAURANT AT THE TIME.
A WORKER NOTICED A SUSPICIOUS PACKAGE UNDER A TABLE WHERE
MINUTES BEFORE TWO MEN HAD BEEN SEATED. AFTER AN INITIAL MINOR
EXPLOSION, THE PACKAGE EXPLODED. THE 35 PEOPLE HAD ALREADY BEEN
EVACUATED FROM THE BUILDING, AND ONLY 1 POLICEMAN WAS SLIGHTLY
INJURED; HE WAS THROWN TO THE GROUND BY THE SHOCK WAVE. THE
AREA WAS IMMEDIATELY CORDONED OFF BY THE AUTHORITIES WHILE THE
OTHER BUSINESSES CLOSED THEIR DOORS. IT IS NOT KNOWN HOW MUCH
DAMAGE WAS CAUSED; HOWEVER, MOST OF THE DAMAGE WAS
OCCURRED INSIDE THE RESTAURANT. THE MEN WHO LEFT THE BOMB FLED
AND THERE ARE NO CLUES AS TO THEIR WHEREABOUTS.

One example of complex event extraction from discourse would

be to identify the various parts of a terrorist incident, which was

one of the early challenges posed for the Message Understand-

ing Conference (MUC) series, held from 1987 to 19978. Figure

7.1 shows a sample of text from the MUC-3 dataset (this is ver-

batim from the source data, including the capitalization and any
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errors). A structure for storing events of terrorism might have

associated roles for the type of incident, the perpetrators, the tar-

gets, including physical, human or national, the location and the

effects on the targets. Figure 7.2 shows the main parts of the tar-

get template, and the values that would be assigned to the roles

based on the fragment of text where a “-” value means that no

filler for the role was found in the text.

Figure 7.2 Some filled roles for the terrorism template from MUC-3

Selected Roles Fillers based on text of Figure 1

DATE OF INCIDENT 2 07 SEP 89

TYPE OF INCIDENT BOMBING

CATEGORY OF INCIDENT TERRORIST ACT

PERPETRATOR: ID OF INDIV(S) “TWO MEN” / “MEN”

PERPETRATOR: ID OF ORG(S) –

PERPETRATOR: CONFIDENCE –

PHYSICAL TARGET: ID(S)
“FAST-FOOD RESTAURANT” /
“PRESTO INSTALLATIONS” /
“RESTAURANT”

PHYSICAL TARGET: TOTAL NUM 1

PHYSICAL TARGET: TYPE(S)
COMMERCIAL: “FAST-FOOD

RESTAURANT” / “PRESTO
INSTALLATIONS” / “RESTAURANT”

HUMAN TARGET: ID(S) “PEOPLE” “POLICEMAN”

HUMAN TARGET: TOTAL NUM 36

HUMAN TARGET: TYPE(S) CIVILIAN: “PEOPLE” LAW
ENFORCEMENT: “POLICEMAN”

TARGET: FOREIGN NATION(S) –

INSTRUMENT: TYPES(S) –

LOCATION OF INCIDENT COLOMBIA: MEDELLIN (CITY)

EFFECT ON PHYSICAL TARGET(S)
SOME DAMAGE: “FAST-FOOD
RESTAURANT” / “PRESTO
INSTALLATIONS” / “RESTAURANT”

EFFECT ON HUMAN TARGET(S) INJURY: “POLICEMAN” NO INJURY:
“PEOPLE”
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A more recent example of a complex task-oriented dialog would

be to create a chatbot that acts as a health coach that encourages

its clients to adopt SMART (specific, measurable, attainable, real-

istic, time-bound) goals and to address barriers to achieving

those goals9. One subtask of this is to find expressions that cor-

respond to Measurability (M), Specificity (S), Attainability (A)

and Realism (R), such as times, activities, and scores and the

utterances that express an intent to elicit a SMART attribute, as

shown in Figure 7.3 from the Gupta dataset of human-human

coaching dialogs10.

Figure 7.3 Examples of tagged goal attributes in Gupta et al (2020) dataset

Coach: What goal could you make that would allow you to do more walking?
Patient: Maybe walk (S activity) more in the evening after work (S time).
Coach: Ok sounds good. [How many days after work (S time) would you like to
walk (S activity)?] (M days number intent)
Coach: [And which days would be best?] (M days name intent)
Patient: 2 days (M days number). Thursday (M days name), maybe Tuesday (M
days name update)
Coach: [Think about how much walking (S activity) you like to do for example 2
block (M quantity distance other)]
(M quantity intent)
Patient: At least around the block (M quantity distance) to start.
Coach: [On a scale of 1 − 10 with 10 being very sure. How sure are you that you
will accomplish your goal?](A intent)
Patient: 5 (A score)

In this section, we have presented two examples (one older, one

recent) of applications of dialog modelling. In the next section,

we will consider more theoretical approaches to models of dis-

course.

7.2 MODELS OF DISCOURSE

Discourse has both a surface structure and an intended meaning.

Discourse structure, like sentence structure, has both a linear and

hierarchical structure of constituents that in computer science

we generally describe as a tree. Discourse has identifiable seg-

ments, associated either with content (topics and subtopics) or

dialog management (begin, end). As a computational abstraction,

processing this structure can be performed using a stack, where
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topics are pushed when they are introduced and popped when

they are completed. (Sequences of pushes and pops reflect par-

ent-child relationships in a tree.)

Evidence for the existence of boundaries between segments

and between higher-level discourse units include both cues in

the surface forms and in the explicit and implicit semantics. Evi-

dence for the lack of a boundary is known as coherence. Dis-

course coherence is maintained by language users through their

choices of words or references to concepts and entities that give

the reader or listener the sense that the topic, and the reason

that they are talking about the topic, has not changed from when

it was introduced. Coherence is related to structure, because

segments will correspond to coherent groups and boundaries

are indicated by expressions that disrupt the coherence. One

way to create coherence is by using referring expressions, such

as expressions that begin with the definite determiner “the”.

Another way to create coherence that is through repetition of

words and phrases that refer to the same or to a related concept.

We call these devices and the resulting phenomena cohesion11.

Words can be related by being synonyms, paraphrases, or hyper-

nyms (which are subtypes of something), by being in part-whole

relations with each other in some model of a domain, or by being

associated with some well-known scenario, such as eating in a

restaurant. These word groupings can be obtained from hand-

built resources such WordNet, or by counting examples in a cor-

pus.

Another way to create coherence is by organizing adjacent

expressions into binary relations that hold between two events

or states of affairs that are being described. There are several

approaches to specifying these relations. One popular approach

uses the terminology of discourse relations, where the words

that signal the relation are known as discourse connectives.

Another approach is to focus on the writer’s own purpose for

including a clause or larger unit; the relations based on the

writer’s purpose are called rhetorical relations. A third approach
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for analyzing discourse (or annotating discourse data) is to focus

on representing the meaning as a variant of a logic that extends

beyond a single sentence. Two examples of a logic-based

approach are Discourse Representation Theory (discussed later

in this section) and SNePS12, 13, 14.

The remainder of Section 7.2 discusses discourse relations,

rhetorical relations, Discourse Representation Theory, referring

expressions, and entailments of discourse. While not exhaus-

tive, this group of approaches to discourse covers the most chal-

lenging tasks and well-developed computational models for

addressing them.

7.2.1 Discourse Relations

Discourse relations are binary relations that hold between adja-

cent clauses or between a clause and a larger coherent unit based

on the semantics of the expressions themselves (rather than the

author’s intentions in making them). The elements of the binary

relation are joined by an implicit or explicit discourse connective

that indicates the type of semantic relation that holds between

the two parts. Discourse connectives include words like “so” and

“because” whose lexical meaning specifies the type of discourse

relation (such as “explanation” or “justification”). The two related

expressions are typically complete clauses, but one of them might

be a complex noun phrase derived from a clause, such as “the

occurrence of a pandemic” which is derived from “a pandemic

occurred”. We call such derived noun phrases “nominalizations”.

Figure 7.4 includes some examples of discourse relations that

occur within a single sentence. In the figure, the discourse con-

nective has been underlined, Argument 1 (like the subject) of the

binary relation is in italics, and Argument 2 (the object of the

connective) is in bold font, following the conventions of the Penn

Discourse Treebank (PDTB)15. The semantics of the connective

is shown in the second column with its top-level category and

the subcategory to which it belongs. So in the second exam-

ple, Argument 2 is the Reason for the state of affairs of someone
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being “considered to be at high risk”. In the second example,

Argument 2 is a nominalization.

Figure 7.4 Examples of Discourse relations.

Example Relation type

She hasn’t played any music
since the earthquake hit. (Temporal.Succession)

She was originally considered
to be at high risk due to the
familial occurrence of
breast and other types of
cancer.

(Cause.Reason)

The theory and methods for annotating discourse relations were

developed by researchers at the University of Pennsylvania, who

have annotated hundreds of texts into two discourse-level tree-

banks. The annotation is described in a written guideline doc-

ument16. Discourse relations can be Temporal, Contingency,

Comparison, or Elaboration relations, the last of which corre-

sponds to just saying more about the same topic. There are

dozens of discourse relations and hundreds of discourse connec-

tives, as sometimes each relation can be expressed by several dif-

ferent connectives.

7.2.2 Rhetorical Relations

Rhetorical relations are binary relations that hold between lin-

guistic expressions but they are not limited to the semantics of

the expressions themselves. Rhetoric, as a discipline, pertains to

strategies for making discourse effective or persuasive in achiev-

ing the goals of the author or speaker. Effective communication

has a well-defined goal, and each element contributes in some

way, such as providing background, evidence, comparison, or

contrast. The related expressions can be clauses, groups of

clauses, or phrases used as titles or subheadings. Rhetorical

Structure Theory (RST)17 defines a set of relations by giving a

set of conditions to be satisfied, without providing a specific syn-

tax, such as discourse connectives. The types of relations include
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informational relations, like elaboration, which, like discourse

relations, pertain to the semantics of text, and also presentational

relations, which pertain to the purpose or intention of the

author. For example, a writer may want to motivate the reader to

do something, and so they may describe a state of affairs along

with some reason that the reader might find the state beneficial.

As with discourse relations, the relations are asymmetric. In RST,

this is handled by designating one of the elements as the nucleus

and the other as a satellite, where the nucleus corresponds the

main assertion and the satellite is the segment that modifies it.

Every relation is given a definition that includes semantic con-

straints on both the nucleus and the satellite. These definitions

can be used to select among alternative relation types, or to add

implicit information to a representation of discourse meaning.

Figure 7.5 Rhetorical relations: Evidence vs. Justify

Definition of relation Example

Relation name: EVIDENCE
Constraints on N: R might not believe N
to a degree satisfactory to W(riter)
Constraints on S: The reader believes S
or will find it credible
Constraints on the N+S combination: R’s
comprehending S increases R’s belief of
N
The effect: R’s belief of N is increased
Locus of the effect: N

1.The program as published for
calendar year 1980 really works.
2.In only a few minutes, I entered all
the figures from my 1980 tax return
3.And got a result which agreed with
my hand calculations to the penny.
2-3 EVIDENCE for 1

Relation name: JUSTIFY
Constraints on N: none
Constraints on S: none
Constraints on N+S combination: R’s
comprehending S increases R’s readiness
to accept W’s right to present N
The effect: R’s readiness to accept W’s
right to present N is increased
Locus of the effect: N

1. No matter how much one wants to
stay a nonsmoker,
2. the truth is that the pressure to
smoke in junior high is greater than it
will be in any other time of one’s life.
3. We know that 3,000 teens start
smoking each day.
3 is EVIDENCE for 2
1 is JUSTIFICATION for believing 2

Use of RST has included the creation of discourse-level parsers

and several datasets annotated with RST relations. One example

is the Potsdam Commentary Corpus18, which is a large dataset

created at the University of Potsdam in Germany19 that has been

annotated with several types of linguistic information, including
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sentence syntax, coreference, discourse Structure (RST & PDTB),

and “aboutness topics”. Rhetorical relations have also been

included in other models of discourse, including Segmented Dis-

course Representation Theory20 and in the Dialog Annotation

Markup Language (DiAML), as part of the ISO standard for

annotating semantic information in discourse21, 22.

7.2.3 Discourse Representation Theory

Discourse Representation Theory (DRT)23, 24 is an extension of

predicate logic, covering the representation of entities, relations,

and propositions as they arise in discourse. DRT structures have

two main parts, a set of discourse referents representing enti-

ties that are under discussion and a set of propositions captur-

ing information that has been given about discourse referents,

including their type, their properties, and any events or states

that would be true of them. Past work involved writing parsers

to map sentences onto DRT using logic programming, so that

they could be used to answer general queries about the content25.

DRT has been used more recently for creating new datasets26.

DRT is similar in expressiveness to frameworks based on seman-

tic networks, such as SNePS27, 28, or modern ontology lan-

guages such as the Web Ontology Language (OWL)29. While

logic-based representations have a well-defined semantics, infer-

ence as theorem proving is generally less efficient than reasoning

with graph-based representations, because graphs represent each

entity as a single node, shared across all mentions within a text

and use graph traversal, instead of exhaustive search, to perform

inference.

7.2.4 Referring Expressions

In communication, topics and entities can be introduced into

the context using a proper name or a complex description with

sufficient detail for the hearer or reader to identify the concept

that the speaker or author intended. Subsequent mentions will be

shorter, either by eliminating some detail, or by using a pronoun.
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The fact that different mentions of a discourse entity can refer

the same entity contributes to structure, meaning, and coher-

ence, as repeated reference to the same entity is evidence that

the enclosing units are part of a common structure (such as a

discourse relation or rhetorical relation). Figure 7.6 includes the

pseudocode for a search-based algorithm for finding the referent

of a referring expression in either the current clause or the pre-

ceding one, an approach known as “centering”30. The algorithm

keeps track of the mentions of entities for each clause and for the

preceding one. (For the first clause, the preceding one is empty.)

The algorithm iterates through each referring expression in the

current clause, comparing it to ones seen so far, looking first

within the current sentence and then to the previous ones. It also

checks whether features of the pronoun and candidate referent,

such as gender and number, are compatible.

Figure 7.6 Algorithm to resolve referring expressions

More recent approaches use statistical modelling31 and classi-

fication32. There is a huge literature in this area; one useful

resource is the book by Van Deemter33.

7.2.5 Entailments of Discourse

The semantics of discourse includes both explicit meaning and

implicit inferences. Explicit meaning corresponds to what is lit-

erally expressed by the sentences that comprise the discourse,

such as an assertion about an event related to the main verb

and its arguments. Implicit meaning is much more complex, as

it relies on the physical, social, and cognitive context that each

reader or listener uses to understand a discourse. Implicit mean-
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ing derives from presumptions that people who communicate

are aware of their context, understand how language and objects

in the world interact, and are generally rational and cooperative

beings. Not all people are uniform in these capabilities, so we will

describe what is considered implicitly known among people who

are fluent and neurotypical (not having a communication disor-

der34).

Knowing how language works and being rational results in

three types of inferences that we call entailments or implicatures:

1) inferences made because we assume that speakers want us

to understand them, known as conversational implicatures; 2)

inferences made because of the meanings of words, known as

conventional implicatures; and 3) inferences made because they

are necessary to make sentences appropriate, known as presup-

positions. Conversational implicatures arise because we expect

that speakers and hearers cooperate to allow each other to be

understood with minimal effort. Grice, a philosopher of lan-

guage, expressed this expectation as a general Cooperative Prin-

ciple, along with a set of four maxims of quality, quantity,

relevance, and manner35. These maxims can be paraphrased as:

speak the truth, say what you mean, pay attention to others, and

be clear in how you say something – reducing the effort needed

to understand you. The division of the Cooperative Principle

into separate maxims is helpful, because the separate maxims

can be associated with different types of expressions and mecha-

nisms for drawing inferences. For example, quantity often relates

to a noun phrase, relevance relates to a discourse or rhetorical

relation, and manner presumes that if a word is ambiguous, the

word sense that is most likely given the context is the one that

was intended, unless there is some indication otherwise.

Conventional implicatures occur because the definitions of

some words specify that certain attributes necessarily hold. For

example, the meaning of the word “and” as a clause-level con-

junction includes that the two asserted propositions being con-

joined are true. Presuppositions are similar, in that they arise
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from meanings of words or expressions, but the inferences they

trigger are defeasible. By defeasible, we mean that although they

be derivable as true from a certain set of facts, with additional

facts they can be overridden (and no longer derivable). For exam-

ple, change of state verbs like “start” and “stop” entail that the

state or action described was previously in a different state. Pre-

suppositions are used frequently in advertisements, because they

make claims about the world without making explicit assertions

about their truth. For example, “New Cheerios are even better

than they were before.” presupposes they were good in the past.

A fourth source of inference arises when we consider language

as an example of rational behavior where actions have expected

and intended outcomes. Actions are planned and performed to

achieve a goal. For example, we wash things to make them clean;

we tell people statements so they will believe those statements

are true (or at least that we believed that they were true). Also,

different types of actions have different conditions for their suc-

cess and make different types of changes to the environment in

which they occur. So, asking someone how to find a particular

building will be successful (that is, I will learn where the building

is) only if it has been said to someone who knows where the

building is and they could understand the question. Traditional

AI planning has addressed problems like this by creating for-

malisms, such as ontologies, to capture the necessary relation-

ships. Before that, early AI work used a variety of ad hoc

representations, such as production rules and STRIPS style oper-

ators36, that could derive plans using search-based problem

solvers. Operators for planning are most often described using

a dialect of The Planning Domain Definition Language (PDDL),

such as PDDL337. A few recent approaches to operator-based

planning use machine learning38.

7.2.5.1 Implementations and Resources for Entailments

All types of entailments can be represented as ad hoc rules or as

inference over well-formed expressions in a suitable logic. Non-
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defeasible inferences can be captured in first order logic. Defea-

sible inferences require mechanisms that allow one to “override”

assertions based on new information. These frameworks are

known collectively as non-monotonic logics. Examples include

default logic and circumscription39. Recent work includes classi-

fication-based approaches that address some forms of inference.

This work falls under either: Recognizing Textual Entailments

(RTE) or Natural Language Inference (NLI). To enable these

classification-based approaches, artificial datasets have been cre-

ated, often as part of challenge tasks at a conference. The labels

for the data are entails, contradicts, and neutral. The sentences

for the datasets have been created by asking crowdsource work-

ers (such as those who take jobs posted to Amazon Mechanical

Turk) to provide a neutral, contradictory, or entailed sentence

for a given one. The given sentences have been previously cre-

ated by experts to capture the different types of implicatures we

discussed previously. More information, including examples, is

included in Chapter 6, as RTE and NLI are among the current

benchmark tasks for NLP.

7.3 MODELS OF DIALOG

In dialog, there multiple presumed speakers or participants,

who interact with each other by making contributions to the

interaction that we refer to as turns. For each pair of turns, there

is a primary turn and a dependent, although a complex turn can

be both a dependent of the preceding one and primary to the

one that follows. The primary turn creates a context in which the

dependent turn must fit. Another way of describing this depen-

dency is that the speaker who makes the primary turn has control

or initiative. During an interaction, turns shift among the par-

ticipants, as determined by the conventions of communication

and the expectations they create. In some types of dialog, control

may also shift.

Dialog has several aspects that make it more challenging than

a narrative created by a single author. The first challenge is that
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it unfolds in real time, which limits the amount of inference that

participants can be expected to do. Also, since participants do

not share a common representation of discourse meaning, par-

ticipants must include mechanisms (or rely on accepted defaults)

for managing dialog control and for addressing possible mis-

hearing or misunderstanding40. As turns shift, the respondent

will indicate whether they understood or agreed with the prior

turn, either explicitly or implicitly. The process of exchanging

evidence of the success of dialog is called grounding.

There are subtypes of dialog that differ based on whether con-

trol is fixed with one participant or may be relinquished and

claimed41. In natural conversation, any of the participants may

have control. The first speaker makes his contribution and either

implicitly selects the next speaker (while maintaining control)

or explicitly gives up control, for example by pausing for more

than the “usual” amount of time between clauses. However, in

most human-machine interaction, usually only one participant

has control. In a command system, the user has all control; a

typical example is a question-answering system or an informa-

tion retrieval system. In a single-initiative system, the system has

control; a typical example would be a system for automated cus-

tomer support or other automated telephony.

7.3.1 Turn taking and Grounding

Turn taking is how participants in a multi-party spoken inter-

action control whose turn it is, which they accomplish through

a combination of content (what they say) and timing (how long

they pause after speaking). Conventions from spoken interaction

also sometimes carryover into other modalities such as text mes-

saging. Many utterances occur in well-defined pairs of contri-

bution and acceptance, sometimes called adjacency pairs42,

including: question-answer, greeting-greeting, and request-

grant. Then, whenever a speaker says the first part of a pair,

they are indicating both who will speak next for the second part

and what type of response is expected. Speakers use pauses after

PRINCIPLES OF NATURAL LANGUAGE PROCESSING 197



their utterances to indicate where turns end or a new one should

begin. For example, a long pause gives away control – and if

someone waits too long to answer, it implies there is a problem

(e.g., they did not hear something).

Respondents continuously verify to speakers that they have

heard and understood by including explicit markers or following

conventional strategies, to provide evidence of grounding43, 44.

In face-to-face interaction, these cues can be silent and implicit,

such as just appearing to pay attention. However, as the pos-

sibility of breakdown increases, the cues become increasingly

explicit. The second-most implicit cue is to provide the most rel-

evant next contribution. For example, given a yes-no question,

the respondent will provide one of the expected types of answers

(a yes or a no). The next step up, a minimal explicit cue, would be

to provide an acknowledgement. This feedback might be given

by a nod, an audible backchannel device (“uh-huh”), a simple con-

tinuer (“and”) or a non-specific assessment (“Great” or “No kid-

ding”). Then, as uncertainty increases, a more disruptive explicit

cue would be demonstration, which involves paraphrasing the

original contribution or collaboratively completing it. For exam-

ple, a response to a possibly ambiguous request such as “Sand-

wich, please.” might be a question – “So you want me to make

you the sandwich?” Paraphrases like this are good for noisy situ-

ations, even though it takes extra time, because it confirms pre-

cisely which parts of the prior turn were heard and understood

(and possibly reduces the amount of repetition overall). The last,

and most highly explicit cue, called a verbatim display, is for the

hearer to repeat word-for-word everything the speaker said. The

problem with this approach, from the speaker’s point of view, is

that it confirms “hearing” without conveying understanding or

agreement. Thus, a verbatim display may be accompanied by a

paraphrase demonstration too. Figure 7.7 provides an example

for each type of grounding device.
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Figure 7.7 Examples of Grounding Acts in Dialog
(as specified by Clark and Schaefer 1989)

Grounding type Example of a turn (A) and a reply (B) with grounding

Continued attention

Relevant next
contribution A: How are you? B: I am fine thank you.

Acknowledgement A: I’d like a small burger. B: Okay. Would you like fries
with that?

Demonstration A I’d like a small burger. B: You want to order a
hamburger. Anything else?

Display A. I’d like a small burger. B: a small burger…

Display+Demonstration A. I’d like a small burger. B: a small burger, and besides
the burger, anything else in your order today?

Speakers specify the relevant next contribution through a com-

bination of the surface form (the syntax) and a shared expec-

tation that respondents will do something or draw inferences,

as needed, about why something was said, if the surface form

does not directly correspond to something that would be per-

ceived as useful for the speaker. There are five surface forms used

in English. The five types are shown in Figure 7.8. Assertives

state something as a fact. Directives tell someone to do some-

thing. Commissives tell someone that the the speaker agrees to

do something. Expressives state an opinion or feeling (which

must be accepted at face value). Declaratives make something

true by virtue of saying it, such as offering thanks, making

promises, expressing congratulations, etc.
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Figure 7.8 Examples of Surface Forms for Dialog Acts

Type Example Possible intended
responses

Assertive That is a cat. Hearer will be able to
identify a cat.

Directive Let the cat out. Hearer will let the cat out.

Commissive I will let the cat out. Hearer will know that the
cat will be let out.

Expressive Cats are great pets. Hearer will know that the
speaker likes cats.

Declaratives I compliment your good
manners.

Hearer will feel their
behavior was accepted or
appreciated by the
speaker.

When the type of action matches the surface form, we say that

the expression is direct or literal, otherwise it is indirect or non-

literal. For example, the expression “Can you pass the salt?” is a

direct yes-no question, but an indirect request (to pass the salt),

which can be further clarified by adding other request features,

such as “please“45. The acceptable use of indirect language is spe-

cific to particular language groups. For example, in some cul-

tures (or family subcultures) it is considered impolite to request

or order something directly (e.g., “Close the window.”), so speak-

ers will put their request in another form that is related, and rely

on the listener to infer the request (e.g., “Can you close the win-

dow?” or “I’m feeling cold with that window open.”). These forms

are not universal, and thus others may find such indirect requests

impolite or confusing46.

7.3.2 Mixed-Initiative Dialog and the Turing Test

In natural dialog, control may begin with one participant, for

example by introducing a topic, but may shift to others, who can

introduce subtopics or ask questions. These dialogs are called

mixed initiative to distinguish them from the more typical sys-

tems that are either command systems or single-initiative47.

Mixed-initiative has been the ideal for human-machine interac-
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tion, however, no system yet achieves this standard. Telephony

systems come close to mixed initiative (and they call it that) by

allowing users to specify more than one field value per prompt,

rather than requiring them to explicitly follow one prompt per

field. Attempts to drive progress have taken various forms,

including the Loebner prize, which is based on the Turing Test.

The Turing Test, first proposed by Alan Turing 1950 as a parlor

game – as computers didn’t exist – has long been used as a

benchmark for AI. The AI Turing Test for AI is such that, if you

cannot tell whether you are talking to a person or machine, then

the AI is “successful”. For many years, the Turing Test was just

a thought experiment, but starting around 1990 it became the

focus of an annual challenge, called the Loebner prize. This com-

petition offers a large financial prize (equivalent to a million U.S.

dollars) for creating a system that provides the most convinc-

ingly natural dialog. Most recently, this competition has been

sponsored by the Society for the Study of Artificial Intelligence

and Simulation of Behaviour, the largest and most longstanding

AI society in the UK, active since 196448. You can find a video

online by Data Skeptic that describes the Loebner Prize49.

7.3.3 Frameworks for Implementing Dialog Systems

Superficial general-purpose dialog systems (also called dialog

agents) can now be built with relatively little programming

effort. These systems can be created either using rule-based chat-

bot libraries, interpreters for a subdialect of XML called

VoiceXML, or commercial Machine Learning-based toolkits that

rely on datasets of turns labeled with the desired type of

response, such as the Alexa Skills Kit. To support more complex

machine learning approaches in the future, there is also an anno-

tation framework called the Dialog Act Markup Language

(DiAML), which is covered by an ISO Standard50. DiAML pro-

vides a framework for labelling dialog turns in a task indepen-

dent way. Here we will provide a brief overview of these

methods.
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7.3.3.1 Rule-based chatbot libraries

Rule-based chat systems, such as found in the NLTK chat pack-

age, “perform simple pattern matching on sentences typed by

users, and respond with automatically generated sentences”51.

This approach is similar to the one used for first chatbots, such

as ELIZA52. Patterns are specified using ad hoc code or regular

expressions, and they may bind a variable to parts of what was

said to provide more tailored responses. Associated with each

pattern is a list of replies, from which the system selects ran-

domly. To build more complex behavior that addresses more

than just the contents of the current utterance, one must do some

programming to keep track of past exchanges. For example, to

use the NLTK one must alter the chat.converse() function to do

the necessary data storage and lookup.

7.3.3.2 VoiceXML-based frameworks

VoiceXML is a markup language for designing speech dialog

systems. It is a subdialect of XML that resulted from a collab-

orative effort begun in 1999 with input from major U.S. com-

puter companies of the time, AT&T, IBM, Lucent, and Motorola.

Other companies participated in subsequent forums and revi-

sions and the most recent version (3.0) was released by W3C in

2010 as a “Working Draft”. Along with the specified syntax, there

are numerous providers of interpreters for VoiceXML that link

directly to the international telephone network through stan-

dard phone numbers. These interpreters provide automated

speech recognition (ASR) and text-to-speech (TTS) for a variety

of languages, so that the utterances of the system will be heard

as a natural voice, when a person (or another system) interacts

with a deployed system. Using VoiceXML allows individuals and

companies to quickly build task-specific dialog systems that fol-

low a simple, frame-based model of mixed initiative interaction,

where the user’s range of replies can be specified as a set of pre-

defined slots. Figure 7.9 is an example of how VoiceXML could
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be used for choosing among different services, which might be

part of a longer dialog for booking travel.

Figure 7.9 Sample VoiceXML Form

In VoiceXML, each dialog is specified either as a form or a

“menu” which gives the user a choice of options and then transi-

tions to another dialog based on their choice (like a phone tree).

Figure 7.9 shows a simple form. Forms consist of a sequence of

fields along with some other commands. For example, “prompt”

is a command for the system to say something. (As in all html/

xml type frameworks, labels are enclosed in left and right angle

brackets, where boundaries of a data object are marked by

matching opening <label> and closing </label> tags. The example

defines a single slot (called a field) called “transporttype”, and

provides a prompt and a grammar for analyzing the response.

The final prompt at the bottom confirms the inputs values. Com-

mands are specifications that identify significant events (like

getting no input or no match) and map the event to the action the

system should take, such as repeating the prompt. Simple mixed

PRINCIPLES OF NATURAL LANGUAGE PROCESSING 203



initiative dialogs can be approximated by defining multiple slots,

which the interpreters will fill in any order, including matching

multiple slots from a single utterance. Figure 7.10 shows a frag-

ment of a form that specifies multiple slots related to booking an

airline ticket.

Figure 7.10 Example of multiple VoiceXML fields

7.3.3.3 Commercial ML based chatbot toolkits

Both software libraries and VoiceXML lack flexibility desired

by modern users. To address this limitation, a number of com-

mercial software service providers, including Google, Amazon,
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Cisco, and Facebook provide tools for implementing chatbots.

These chatbots are platform specific, as the companies intend

that they be deployed on their proprietary smart speakers and

devices (e.g., Siri, Amazon Alexa, Facebook Dialogflow, etc.). To

use these toolkits, a developer specifies a set of “intents” which

are labels for each type of response. Developers also provide

labelled training data and the response to be associated with each

label. These responses can use of any of the functions supported

by the platform, e.g., anything in Amazon Web Services (AWS).

The training data for each intent will be a set of verbatim alterna-

tive sentences with patterns that include predefined types, such

as days of the week, names of cities, numbers, etc. These plat-

forms also include a few predefined intents (such as for indicat-

ing Yes or No or for restarting the dialog). Figure 7.11 shows the

definition of a simple intent53, using Amazon’s specification lan-

guage; it presumes that “course_name” has been predefined (as a

developer-specified category).

Figure 7.11 An intent for Amazon Alexa

7.3.4 The Dialog Action Markup Language

The development of classifier-based systems for dialog is limited

by lack of availability of high quality datasets. The datasets col-

lected by commercial systems are not generally available. Cre-

ating large, task-independent datasets will require significant

resources. As a step toward this goal, researchers have specified

a general framework for annotating semantics (now covered by

an ISO standard) that includes a specification for annotating

dialog data54. The specified labels cover both semantic content

and communicative function. In the framework, semantic con-
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tent includes semantic roles and entities and the communicative

function is akin to the utterance types shown in Figure 7.2, such

as assertive or directive. There are also nine semantic dimensions

which correspond to the overall purpose of an act, which include

information exchange, social functions, and dialog management.

The most commonly occurring semantic dimensions are tasks

(such as to exchange information), social obligations (such as to

apologize), feedback (to indicate what was heard/understood/

agreed upon about a prior behavior), discourse structuring (to

introduce new topics or correct errors in what was said earlier),

and own-communication management (such as to correct prior

speech errors). Communicative functions include actions that

manage the interaction itself, such as pause, apology, take-turn,

question, answer, offer, and instruct. The DiAML standard also

specifies functional qualifiers, such as, conditionality, certainty,

and sentiment and dependence relations, such as the use of pro-

nouns.

7.3.4.1 DiAML Syntax

The DiAML dialog annotation standard defines a functional seg-

ment as the smallest span of behavior having at least one com-

plete communicative function. These segments are the units that

are to be annotated, where each segment can have several (pos-

sibly overlapping) semantic dimensions. For example, a segment

with a feedback function can overlap a segment that has a seman-

tic function, since typically only the first few words provide

feedback, but the entire utterances is considered to perform the

task-related function. The syntax for annotating segments is

expressed using XML. It has elements corresponding to dialog

acts (labelled as dialogueAct) and rhetorical relations (labelled as

rhetoricalLink), which are semantic relations between two acts,

such as Justify or Motivate. In the markup, each segment pro-

vides a label for the span of text, the sender, the addressee, the

communicative function, and the semantic dimension. The spec-

ification for a segment can also include dependence relations, if
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those relations exist. Rhetorical links specify the two segments

being linked and the name of the linking relation, where the

names of the rhetorical relations (such as Motivate or Justify) are

left to the individual project guidelines to determine, and are not

part of the ISO standard.

7.3.4.2 Resources for DiAML

Resources for using DiAML are limited. There is a tool for anno-

tating multimodal dialog in video data, called “ANVIL”55, 56, 57.

The creators of ANVIL provide small samples of annotated data

to help illustrate the use of the tool.

One older, but still useful dataset, is a version of the Switch-

board Corpus58 that has been annotated with general types of

dialog actions, including yes-no questions, statements, expres-

sions of appreciation, etc, comprising 42 distinct types overall59.

The corpus contains 1,155 five-minute telephone conversations

between two participants, where callers discuss one of a fixed set

of pre-defined topics, including child care, recycling, and news

media. Overall, about 440 different speakers participated, pro-

ducing 221,616 utterances (or 122,646 utterances, if consecutive

utterances by the same person are combined). The corpus is now

openly distributed by researchers at the University of Colorado

at Boulder60.

7.4 SUMMARY

Discourse, like sentences, has identifiable components and

semantic relations that hold between these components. The

overall structure is treelike (although some referring expressions

may require a graph to capture all the dependencies). The leaves

of these structures are the simplest clause-level segments. Coher-

ence is what determines the boundaries of units. Boundaries

between segments can often also be detected statistically, as there

tends to be more correlation among words and concepts within a

unit than across them. Meaning derives both from what is explic-

itly mentioned and also the implicit inferences that follow from
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the knowledge of the people who produce and interpret linguis-

tic expressions. Today, some of these inferences can be captured

via classification-based approaches, such for classifying textual

entailments, but a deeper analysis requires more specialized data

or methods, yet to be developed. Dialog is a special case of dis-

course where the meaning and structure are managed through

the interaction and cooperation of the participants, using devices

such as grounding. They also rely on expected patterns among

pairs of turns, such as question and answer, to reduce the need

for explicit grounding.
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CHAPTER 8.

QUESTION ANSWERING, TEXT RETRIEVAL,

INFORMATION EXTRACTION, &

ARGUMENTATION MINING

This chapter considers two special cases of discourse: questions

and arguments; and methods that support them: question-

anwering, text retrieval, information extraction, and argumen-

tation mining. In the traditional account of language, we

distinguish three types of sentences: statements (declaratives),

questions (interrogatives), and commands (imperatives). During

an interaction among multiple people or people and a computer

system, these types of sentences occur together to address the

goals of information seeking (e.g., via question answering) or

persuasion (e.g., argumentation). An overview each of these top-

ics follows:

• Question Answering (QA), also known as information-

seeking dialog, is a type of two-way interaction where the

user controls the primary turns and the system responds.

Such a system must first interpret the question and then

create and deliver the response. Creating the response

may be a relatively simple matter of finding an answer

within a table (e.g., within a FAQ), or initiating a pipeline

of processes to find the most relevant document and

extract a response from the document.
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• Text retrieval returns ranked lists of documents, but not

an “answer”. For real-time QA, one needs a separate sys-

tem to preprocess the documents to support search for a

wide range of information needs, a task called informa-

tion retrieval. When the documents are mostly unstruc-

tured text, we call it text retrieval.

• Information extraction finds a specific answer to address

the focus of a question. Information extraction methods

can also be applied to find all possible properties or rela-

tions mentioned in a text, either based on the main verb,

or on predefined entity types, such as person, location,

and time.

• Argumentation mining is a special case of information

extraction where the extracted components have been

defined to model the legal notion of an argument, such as

claim, attack, and rebuttal.

We will consider both the characteristics of these types of dis-

course and the computational methods for achieving them in

greater detail. However, first we will consider some interesting

real-world examples.

8.1 EXAMPLES OF QUESTION ANSWERING

Suppose that you wish to create a chatbot style front end to a

general purpose search engine, such as provided by many smart

speakers like Amazon’s Alexa or Apple’s Siri as well as the search

boxes of modern browsers, such as Chrome. You would like it

to process questions in context – which includes the time and

place of the question. Sometimes it can answer with information

drawn from static stored sources, like Wikipedia, but sometimes

it must be able to access sources that change.

Figure 8.1 shows some examples of questions and replies from

Chrome, on a Sunday in January, 2021 in Milwaukee, Wisconsin.
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Figure 8.1 Examples of Question Answering by Chrome (2021)

Question Response

When do the Bucks play?

Untailored table of the dates, times and
opponent of four Milwaukee Bucks
basketball games in the second half
February, but none for the up coming
week

Where is Milwaukee playing this week?
A tailored display (with team logo) of 4
games between Feb 3 and Feb 6

Who beat the Bucks?

A tailored display of the score from
yesterday’s game and a link to the
entire schedule, with scores of past
games.

Who beat Milwaukee this year? The same display as above

Who owns the Bucks?
Untailored table of the coach, the
ownership, the affiliations, etc, and a
link to the Wikipedia page

Now suppose that one wishes to create a tool to help the moder-

ator of an online forum answer questions from cancer survivors.

People can post their stories to a forum, including requests for

information or advice, and forum members can also respond to

each other. The moderator may chime in with the answer to

a question if it has gone unanswered for too long or the best

answer is missing. Sometimes the questions are answerable with-

out more information; sometimes the best thing to do is to refer

them to a healthcare provider. The challenges include: identify-

ing requests for information,identifying whether the responses

have adequately answered the question, and if necessary, finding

and providing either a direct answer (if it is brief) or reference

to a longer document that would contain the answer. One recent

approach tested the idea of training a classifier to identify sen-

tences that express an information need, extracting keywords

from those sentences to form a query to a search engine to

extract passages from the provider’s existing educational materi-

als for patient. They study found that very few questions would

be answerable from the educational documents, because they

contained concepts outside the scope of the materials1. (For
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example, the patient might have already read the materials and

found they did not address their concerns, e.g., how to cope with

hair loss, or were too generic, and that is what motivated them to

seek help from peers.)

8.2 QUESTION ANSWERING

In a general dialog system, handling questions requires identify-

ing that a clause in the dialog expresses a question, identifying

the semantics of the question, such as the topic and any con-

straints, and identifying the expected answer type (EAT) of the

question, such as a person, location, or description. The iden-

tified information is then used to decide how to address the

question, which might be a direct answer, or an explanation

of why the EAT is not provided. Sometimes frequently asked

questions (FAQ) are known and their answers can be precom-

puted and stored so that they can be delivered quickly. Less

frequent, but predictable, questions are often anticipated by doc-

ument authors and included in the metadata stored with a doc-

ument. The types of information typically found in metadata

include the names of authors, the title, the date of publication,

and several subject headings, which are terms from a controlled

vocabulary. To answer a question, selected information from the

metadata can be aggregated and used as input to a natural lan-

guage generation system (see Chapter 9). Otherwise, novel or

unexpected questions, which are sometimes referred to as “open

domain” questions, can be answered by applying a pipeline of

processes to extract an answer from a set of previously processed

passages (paragraphs) created from a collection of documents or

from a call to a general web search engine2. Figure 8.2 shows an

example of a pipeline for complex question answering3.

The QA pipeline shown in Figure 8.2 begins with classification

to determine the question and answer types, which may require

subtasks of “feature engineering” to identify important noun

phrases (using named entity recognition), important relations

between verbs and nouns (using semantic role labelling, or rela-
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tion extraction) or to build vector representations (of the words

or the whole question). These inputs are used for querying a

search engine and for extracting information from retrieved

texts. A search engine is a general purpose system for finding

relevant text units. Information extraction is a complex task that

maps unstructured text into a variable or a structure with multi-

ple slots and fillers.

8.2 Example of pipeline for question answering from documents (Image:
Moldavan et al 2000)

8.2.1 Characterization of Questions

Questions are distinct from statements at every level. Question

syntax often uses distinct words, such as who, what, when,

where, why, and how (called “wh-words”). They also have dif-

ferent linear order, such as putting the auxiliary verb before

the main verb: “Is that a duck?”, or moving a wh-expression

to the front as in “What food does a duck eat?” or “In what

drawer did you put my socks?” Recognizing the expected answer

type (EAT) depends on the syntax and semantics of the ques-

tion. For example, a “who” question expects the name of a per-

son, or a very specific description of an individual or group

of people (e.g., “the Congress of the United States”); a “what”

question expects a (nonhuman) object or idea; a “when” ques-

tion expects a time (or a description of temporal constraints); a

“where” question expects a name or description of a location; a

“why” question expects an explanation. Representations of the
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meanings of questions may involve operators that indicate the

type of question (Y/N vs WH), or designated quantified variables

in a logical expression or, in a procedural semantics, the speci-

fication of a function that will retrieve or display information

rather than store it. (For example, in an SQL representation, we

would use SELECT to retrieve infromation and INSERT INTO

to store it.) Question answering, like other forms of discourse,

may also involve making inferences from background beliefs

(such as what is already known or possessed) and forward-look-

ing inferences about the intended goal of having an answer. An

example of an inference would be when people are in a coop-

erative conversation with a travel agent, they can expect that a

“I need the price of a train from Milwaukee to Chicago” will be

treated as a wh-type question, like “What is the price of a ticket

to Chicago?”

8.2.2 Characterization of Answers

Answers are distinct from statements in isolation. The form of

an answer may be a single word, a short phrase, or a complete

sentence. The abbreviated forms are possible because dialog par-

ticipants can expect that an answer will be understood in the

context of the question, and that answer semantics “inherit” the

semantics of the question that prompted it. For example, a ques-

tion that asks “What does a duck say?” can be answered with

just “Quack”, which should be interpreted as “A duck says quack”.

Answers also have implicit meaning, corresponding to the nor-

mal entailments derivable from discourse, based on cooperative-

ness, word meanings, and the fact that language use is a form

of rational behavior (see Chapter 7). In cooperative interaction,

it is the responsibility of the answer provider to assure that any

obvious false inferences are not derivable from the answer 4; for

all other interactions, it is up to the questioner to decide if the

respondent is being misleading.
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8.3 TEXT RETRIEVAL

Text retrieval systems, such as search engines, map an informa-

tion need to a written document or list of documents sorted by a

measure specific to the goals of the system. This measure is typ-

ically a combination of relevance to a need, information quality,

and business goals (e.g., driving sales). The earliest models of text

retrieval followed the organization of libraries and search meth-

ods of expert librarians. Automated methods were first intro-

duced to handle large domain-specific collections, especially for

law and medicine. The massive scale of these collections relative

to the computing power of the time created a need for shallow

methods capable of filtering and sorting through large collec-

tions in a relatively short amount of time5. These shallow meth-

ods include counting words, or short sequences of words, that

occur in each document and across a collection as a whole. The

methods did not include syntactic or semantic processing of the

documents, and except for small sets of a few adjacent words, the

order of words generally was ignored. The scale also necessitated

a division of labor between tasks that are done offline, such as

creating data structures that facilitate document access and tasks

that are done online, such as accessing stored data structures and

presenting the results as a ranked list.

Figure 8.3 illustrates the architecture of a typical text retrieval

system6. The main components are indexing, query processing,

search, ranking, and display of results. We will consider each of

these in turn, moving top to bottom and then left to right across

the figure.

Indexing processes a collection of documents and builds a

table that associates each term (word) in a vocabulary with the

set of items from the collection in which it occurs. This type of

table is called a postings file, or an “inverted” index, because the

normal way people think of an index is to map from a document

or chapter to the words. In the process of indexing, the system
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will also score the importance of each term for each of the docu-

ments in which it occurs.

8.3 Architecture of a text retrieval system (Image: Jurafsky and Martin 2008)

Query processing takes the input from the user (which we call a

query) and performs standardization and generalization steps to

improve the likelihood of a finding a match between the inferred

intent and the documents that are retrieved. Terms in a query

may be removed if they are too general (based on a hand-created

“stoplist”) or terms may be added, such as synonyms from a

thesaurus (“query expansion”). Sometimes unrelated terms are

added on the basis that they were frequent in the top-ranked

matched documents of the original query (“pseudo-relevance

feedback”), which is one method of biasing the search towards

one sense of an ambiguous term. Terms may also be reordered

for efficiency. For example, when the results of queries with mul-

tiple terms conjoined by “and” are merged via an intersection

operation, the smallest sets of results are merged first, decreasing

the number of steps.

Search, also called matching, uses the processed query to find

(partially) matching documents within the index and assigns
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them a score, typically based on the number of terms matched

and their importance.

Ranking sorts the matched items according to a function that

combines the search score with other proprietary factors. Rank-

ing is a critical component, as it has been shown that many users

never look beyond the first page results and instead will try a

different query when the results do not appear to match their

need7. Thus, many methods focus solely on the task of reranking

the results of a less complex retrieval method.

A display of results presents the ranked results, along with

other information about them. The information to be displayed

is selected and formatted to help the user understand the result,

such as what the document might contain and why it was ranked

highly. For example, search terms may be highlighted using bold

font, and spans of text that contain the terms may be extracted

and concatenated so that more of them can be shown on a single

page. Another type of display, called facetted, arranges the search

results into categories, using terms from the retrieved docu-

ments. For example, a search for t-shirts might return a page

with tabs to filter products by price, style (e.g., short-sleeve or v-

neck), or sale items.

The role of natural language processing in the typical IR archi-

tecture is very limited. Morphological analysis and part of speech

tagging are sometimes used in the standardization and general-

ization steps when creating an index and when processing the

query. Natural language generation is sometimes used as a step

in displaying the results. A stronger influence has been from

IR to NLP, as now NLP uses much more statistical analysis of

text and models text with vectors, both of which originated as

ways to model documents efficiently (discussed below). How-

ever, today, the concept of using vectors as a representation has

been extended to the word and sentence level, and the values of

the vector elements are learned as a parameter in an optimiza-

tion process, rather than direct counting of terms, as typical of

text retrieval approaches.
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8.3.1 Vector Spaces for Text Retrieval

In the Vector Space Model (VSM)8 of text retrieval, both docu-

ments in the collection and queries from users are represented

as vectors. Each vector has N elements (dimensions), where each

dimension corresponds to a distinct word type. A word type

might be a syntactic root, or a stem, which is substring of the

original word that need not be an actual word. They are derived

during a linear traversal of all documents in the collection. For

each dimension, for each document, the value will be zero when

the word type does not occur in the document; otherwise it

will be a weight corresponding to the importance of the word

type for discriminating among different documents that might

match the inferred intent of the query. Weights for document

and query vectors are computed as a combination of measures

that are derived from two types of counts: a count of the number

of times that a term occurs in a document, called term frequency,

and a count of the number of times that a term occurs across

a collection of documents, called document frequency9. Having

higher term frequency generally corresponds to higher impor-

tance; having higher document frequency corresponds to lower

importance (for discriminating between documents). The actual

measure used as a weight is called tf-idf, which is calculated as

the product of the term frequency and the log of the inverse

document frequency. The log is used as otherwise the numbers

would be too small to represent accurately by current computers

for large document collections. Sometimes small numbers are

added to the numerator and denominator of the fraction used to

compute inverse document frequency, to reduce the impacts of

documents that vary significantly in overall length across the col-

lection, or when there are documents where a term never occurs.

Scoring the relevance of a document to the inferred intent can

be calculated as the difference between the weight vectors, such

as the “cosine distance” (discussed in Chapter 2), or a variant that

tries to normalize for various factors that can skew the results,

such as differences between the overall lengths of documents
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or terms that do not occur in some documents. Current search

engine libraries, such as Lucene, and tools based on it, such as

ElasticSearch, now use a complex measure, derived from tf-idf,

known as Okapi BM25 (for “Best Match 25”) as the default func-

tion for scoring the match between queries and documents10. It

has additional parameters to account for the average length of

documents across a collection and to allow adjustments to the

balance between term frequency and document frequency.

8.3.2 Evaluation of Text Retrieval Systems

Query processing and ranking methods are optimized by devel-

opers to enhance their performance. Standard measures of per-

formance for text retrieval combine two primary measures:

recall, and precision. Recall is the fraction of the total number

of documents that should have matched that were actually

retrieved, so the denominator is the total number of positives in

the data set. Precision is the fraction of the set of retrieved results

that are actually true examples, so the denominator is the total

number of documents returned. In both precision and recall, the

numerator is the number of relevant items returned, called the

true positives. Accuracy is the sum of the proportion of the rele-

vant things returned and the proportion of irrelevant things not

returned. (Accuracy alone is rarely useful however, because typ-

ically the number of irrelevant items is many orders of magni-

tude greater than the number of relevant items and thus a system

could just return false all the time and achieve high accuracy.)

Another derived measure is called the F1 measure. F1 is the har-

monic mean of the precision and recall, which, when simplified,

is equivalent to two times the product of precision and recall

divided by their sum. For most evaluations, F1 is used because it

balances precision and recall and stays in the range 0 to 1, in a

way that works better for most text retrieval than a simple aver-

age of the two values.

Other measures are sometimes used when trying to compare

systems with different recall results or to better predict the expe-
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rience of users, who typically make multiple queries. These

other measures include Mean Average Precision (MAP) and pre-

cision and recall at rank. MAP measures the precision averaged

over all levels of recall. MAP is used in many shared task chal-

lenges, where recall is determined using results pooled from all

the participants. The precision and recall at rank measures are

useful for comparing ranking methods, where only the top

ranked items are compared. If precision and recall are measured

for just the top N ranked subsets of items, this is called “precision

at rank N” and “recall at rank N”, respectively. These values are

useful from a practical point of view, because many people never

look beyond elements that rank 10 or less when using a search

engine; instead they prefer to try a new query.11

Precision and recall both depend on some external measure

of relevance to use as a “gold standard”. Relevance judgement

is a type of binary classification problem: sometimes the class

can be derived from part of the data itself, but sometimes it is

added manually by asking people to follow an annotation guide-

line. Kappa, Krippendorff’s alpha, and confusion matrices are

all methods of assessing agreement for hand-labelled data. For

example, Kappa is used for binary judgements involving two

judges, and is computed as shown in Figure 8.4, where relevance

corresponds to the label “Y” and irrelevant corresponds to the

label “N”. Software libraries for training classification models,

such as scikit-learn, include functions for computing precision,

recall, F1, Kappa, and a variety of alternative measures for special

circumstances.12
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Figure 8.4 Calculation of agreement using “Kappa”

Observed
agreement

[(# both Judges said Y) + (# both Judges said N)] ÷ (# of
samples)

Expected
agreement

square(Estimated Probability_Y) + square(Estimated
Probability_N)

Estimated
Probability_Y [(# Judge 1 said Y) + (# Judge 2 said Y) ] ÷ [2* (# of samples)]

Estimated
Probabillty_N [(# Judge 1 said N) + (# Judge 2 said N) ] ÷ [2* (# of samples)]

Kappa [ObservedAgreement−ExpectedAgreement] ÷
(1−ExpectedAgreement )

8.3.3 Software for Information Retrieval

The most widely used software library for creating IR systems is

Lucene,13, 14 which is open source. Lucene provides everything

needed to create an IR system except a user interface. A related

tool, SOLR15, is a complete search engine based on Lucene.

Lucene has also been used to create a commercial system, Elas-

ticSearch16. These two systems offer many similar features (such

as flexible query languages, control over ranking, and a backend

NoSQL distributed database), but also have some important dif-

ferences. SOLR is considered lightweight because compressed

it is less than 200 MB, whereas ElasticSearch is about 315 MB

compressed. SOLR offers an HTTP based API and supports a

wide range of rich-text input formats. Its display options include

highlighting and facetting. ElasticSearch uses a RESTful (a web

standard) API and supports both text and non-text queries,

including geospatial queries (which return documents associated

with specific latitude and longitude coordinates for mapping)

and time-series queries (which return time-stamped documents

that ranked highly for dates associated with a given time-series,

such as stock prices, weather, or political events). It also provides

log analytics. Overall, SOLR might be favored for large, static

collections of text; ElasticSearch might be better for dynamic

web-based collections.
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8.4 INFORMATION EXTRACTION

Information extraction (IE) involves identifying entities within

unstructured text and organizing them into (predefined) struc-

tures that can be used as input to downstream tasks, such as QA

or summarization. IE may extract a single entity or it may extract

several to fill multiple roles in a structure at once. Single enti-

ties or “factoids” include simple attributes of objects (such as its

proper name, its size, or its superordinate type in an abstrac-

tion hierarchy). Examples of composite structured descriptions

include specifications of events, which might include the agent,

the object, and various attributes. We will consider two cases of

information extraction: task-dependent information extraction

and open information extraction.

8.4.1 Task-Dependent Information Extraction

In traditional, task-dependent information extraction, structures

are defined by the knowledge engineer or software developer, for

example to populate a database with a fixed schema. An exam-

ple of a complex event would be when one company merges

with another (a “merger event”) or one executive of a company

is replaced by another (a “succession” event). A structure for

describing a succession event might be as shown in Figure 8.5,

where an empty template is shown on the left, and a filled one on

the right. The candidates for the different slots would be deter-

mined using a combination of named entity recognition and

some rule-based filtering. Systems that use named entity recog-

nition can use either predefined types, or can retrain an existing

model to recognize new types of entities. Formats for retraining

data is often the BIO encoding of individual words, to indicate

the start and continuation of each entity type. Training data for

retraining the spaCy NER model is given a list where each train-

ing example is a tuple of the text and a dictionary that provides

a list of entities comprising the start and end indices of the enity
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in that text, and the category for the named entity, e.g., ("Cats
sleep a lot", {"entities": [(0, 3, "PET")]}).

Figure 8.5 Example of a template for information extraction

Example text Filled template

New York Times Co. named Russell
T. Lewis, 45, president and general
manager of its flagship New York
Times newspaper, responsible for all
business-side activities.

<SUCCESSION-1>
ORGANIZATION : New York Times Co.
POST : president
WHO_IS_IN : Russell T. Lewis
WHO_IS_OUT :
</SUCCESSION>

8.4.2 Open Information Extraction

Open information extraction (also called relation extraction or

script inference) aims to convert text into simple triples of a rela-

tion and its two arguments based simply on the semantics and

proximity of the words. The goal is to enable the prediction of

a missing argument, when given a relation and either one of the

arguments (as a query). The relation is usually taken to be the

verb itself. Figure 8.6 shows example output from the online

versions of the Open IE software from AllenNLP17, which is a

reimplementation of a system by Stanovsky et al18, at the top,

and shown at the bottom, from Stanford CoreNLP19.
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Figure 8.6 Examples of output from Open IE online software from AllenNLP and
Stanford CoreNLP

Sentence Extreme weather is battering the Western United States, with fires
raging along the Pacific Coast and snow falling in Colorado.

AllenNLP

battering: [ARGM-TMP: Extreme] [ARG0: weather] is [V: battering] [ARG1: the
Western United States] , [ARGM-MNR: with fires raging along the Pacific Coast and
snow falling in Colorado]

raging: Extreme weather is battering the Western United States , with [ARG1: fires]
[V: raging] [ARGM-LOC: along the Pacific Coast] and snow falling in Colorado

falling: Extreme weather is battering the Western United States , with [ARG1: fires
raging along the Pacific Coast and] [ARG1: snow] [V: falling] [ARGM-LOC: in
Colorado]

Stanford
CoreNLP

[relation: is_battering, subject: extreme weather, object: Western United States,
object: fires raging along the Pacific Coast]

[relation: raging_along, subject: fires, object: Pacific Coast]

[relation: falling_in, subject: snow, object: Colorado]

Identification of the arguments can be performed as a chunking

task, using either search-based matching with regular expres-

sions or a classification-based approach that classifies the start-

ing point and continuations, based on similarly labelled training

data. Alternatively, some implementations use structured clas-

sification and train on data that includes syntactic dependency

structures. Examples of structured classification for OIE include

the work of Chambers and Jurafsky20, Jans et al.21 and Pichotta

and Mooney22,23 and Osterman et al.24. The most recent ver-

sions use Deep Learning approaches, such as LSTM language

modelling.

8.5 ARGUMENTATION MINING

Argumentation mining (AM) is an extraction task specialized

for multi-sentence texts that present a particular claim or point
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of view along with statements that are intended to increase or

decrease the acceptability of that claim for the intended audi-

ence. A canonical example would be a legal argument, where the

statements brought to bear might describe relevant legal statutes,

physical evidence collected at the scene, or reported observations

of witnesses. In legal terms, the primary statement being asserted

is the “claim” and the other statements are known as “premises”.

The relevant statutes would be the “warrant”. The structure of

such arguments is similar to the type of discourse-level analysis

provide by Rhetorical Structure Theory25. In particular graphs

are used to represent the supporting and attacking relationships

between statements of an argument. Potential applications of

AM are still emerging, such as to gain a deeper understanding

of reviews of products and services or to better understand how

the general public perceives important issues of the day and

what arguments would be most persuasive to changing damag-

ing behavior. One recent example involves detecting false claims

by politicians26, 27.

Classification tasks for argumentation include identifying the

boundaries of constituent elements and the argumentative rela-

tionships that hold among elements28. There are many common

forms of argument that might be recognized, such as argument

from analogy. Two markup languages have been developed for

creating datasets, the Argument Markup Language2930 and

Argdown31, a variant of Markdown.

Argumentation Mining is considered a much harder task than

generic information extraction or event mining, because argu-

mentation structures can be nested recursively. That is, a com-

plete argumentation structure (claim and premises) might

function as the premise of some more general claim, and so on.

Recognizing the relationships among components of an argu-

ment also requires real-world knowledge, including knowing

when one thing is a subtype of another. In the example shown

in Figure 8.7, from Moens (2018)32, the second sentence pro-

vides evidence for the claim which appears first, but requires
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real-world knowledge that a cellphone is a type of communica-

tion device.

Figure 8.7 Example of an argument including claim and premise from Moens
(2018)

[CLAIM Technology negatively influences how people communicate.] [PREMISE
Some people use their cellphone constantly and do not even notice their environ-
ment.]

8.6 SUMMARY

In this chapter, we considered four higher-level tasks: Question

Answering, Text Retrieval, and Information Extraction, along

with subtypes such as Argumentation Mining. The first two

(QA, TR) are interactive tasks that involve a system trying to

meet the information needs of the user. Information Extraction

and Argumentation Mining are both forms of knowledge acqui-

sition, which can be done offline, and thus better exploit data

intensive methods, such as Deep Learning. Both use NLP meth-

ods to map unstructured text onto graph-like structures or data-

bases. The resulting information is easier to analyze for a variety

of tasks, such as learning about social or political views, advising

people about how to weigh the evidence for or against some

choice, or helping companies to market products or perform

quality assurance. Most of these tasks use hand-built templates

that have been specified to fit a particular task or observed style

of communication. Open Information Extraction is a subtype

that attempts to build structures automatically, based on the

proximity of words and the structure of phrases.
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CHAPTER 9.

NATURAL LANGUAGE GENERATION,

SUMMARIZATION, & TRANSLATION

In this chapter, we overview three tasks that involve the pro-

duction of well-formed natural language: text generation, text

summarization, and automated translation of natural language.

These three tasks all focus on the synthesis of language from

either structured or unstructured content, rather than the analy-

sis of language, which we considered in prior chapters. Some

applications that use generation are: creating reports and letters,

presenting information retrieval results as snippets, and writing

captions for tables or images. (An example of report generation

would be describing the results of a database query when the

number of results is large. For example, one might present the

results of a query of “cats” on the online database Wikidata

as “There are between 140 and 150 different cats mentioned

in Wikidata; a few examples are Meuzza, Orangey, and Mrs.

Chippy.”) Summarization and translation both involve sequence

to sequence transduction, which means that the input and output

are both sequences. Text summarization starts with a long

sequence of words and produces a shorter one; machine transla-

tion starts with sequences of words in one language and creates

sequences with the same general meaning in another language.

We will consider each of these three tasks, after we first consider
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a more detailed example of a real-world application of natural

language generation.

9.1 AN APPLICATION OF NATURAL LANGUAGE

GENERATION

Recommender systems are programs that help people decide

among several choices (e.g., different models or brands of an

unfamiliar product)1. Suppose that we wish to create a system

that will provide a summary of comments from a range of cus-

tomers, rather than the results of our own testing. To get the

comments, we could extract product reviews from an online

marketplace, which typically include text, an overall rating, and

sometimes a rating of “usefulness” provided by other shoppers.

The output might include a well-formed paragraph describing

what features purchasers liked or disliked. The objective would

be that these automatically written reviews be as informative and

fluid as reviews published in professional publications, such as

“Tom’s Guide” or “Consumer Reports”.

To see what professionals write, consider the example in Fig-

ure 9.1, which includes sentences from the opening paragraphs

of a review written for “Tom’s Guide”2 based on the author’s

personal opinion and testing of the “Roborock S4 Max”, an

autonomous vacuum that entered the market in late 2020. The

review starts with engaging generalities, mentions some specific

features, and then continues afterwards with several labelled

subsections on: price and availability; design; cleaning perfor-

mance; setup, map, app, and mapping; and verdict. These subsec-

tions include both text and tables.

Figure 9.1 Sentences from McDonough (2020) review of Roborock S4 Max

While there are plenty of budget-busting robot vacuums ready to do your bidding,
finding one like the Roborock S4 Max, which combines performance and
affordability, is rare. It gets the job down smartly and efficiently– without cleaning
out your wallet. …
In our Roborock S4 Max review, we found a vacuum that works well and has useful,
modern features. With fast mapping, single room cleaning, and automatic carpet
detection, the $429 S4 Max strikes the right balance of performance, features, and
cost. All of that has earned a spot at the top of our best robot vacuums list.
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At the same time, if you had searched online, you would have

found customer reviews as shown in Figure 9.2. In the positive

review, the features mentioned were: mopping, camera based

object avoidance, (quality of) cleaning, WiFi setup, laser naviga-

tion, battery life, (degree of) quiet, (speed of) mopping, (accuracy

of) map, virtual walls, no-go function. In the negative review, the

features mentioned were: (accuracy of) map, (quality of) clean-

ing (expressed as “There was a lot of debris left after two cycles

on max mode”), (quality of) suction, (accuracy of) mapping,

expressed as “It is currently in my master bathroom running into

the cabinet although it was set to clean the kitchen”; and (quality

of) object avoidance (expressed as “running into walls” and “stuck

under the dishwasher”).

Figure 9.2 Sample reviews from Amazon.com

Negative
review
(1 star)

Let me start by saying this is my first robot vacuum. I read a million reviews and did my
research. I am less than impressed! The first day it didn’t map my house correctly so I
mapped it again no biggie. It worked great on my tile floor the first couple of days but
not so much on my large area rug. There was a lot of debris left after two cycles on max
mode. The suction is awful on rugs we are about a week in and it’s the same with my
tile. I would like to mention I have cleaned the dust bun and untangled hair from the
rollers after every cycle. Now it doesn’t even clean the rooms I set for it to clean. It is
currently in my master bathroom running into the cabinet although it was set to clean
the kitchen. I also had issues with it going in circles running into walls. It literally runs
into EVERYTHING it is constantly stuck under the dishwasher. Even after I set it as a
no go zone! I tried to contact support but they haven’t responded. Highly disappointed
as I have heard good things about roborock. I would look elsewhere save your money!

Positive
review
(5 star)

If you don’t need mopping, get the S4 Max vs the S5 Max. If you don’t need camera
based object avoidance, and most people don’t (or don’t want vacuum cameras in your
house) get the S4 Max vs the S6 Max.

Great cleaning, easy WiFi setup, laser navigation, ~150 minutes of battery life,
surprisingly quiet especially on the lowest power setting, and you can now know the
precise square footage of every room you have!

Better cleanup performance than the Roomba s9 and the same as the S6 Max. I like
that it doesn’t include a mopping function as I didn’t need this, saving extra costs.

The Roborock S4 Max uses LiDAR navigation enabling super fast mapping. Same
capability as the Roborock S5 Max. I was amazed how quickly you can see on the app
the map being generated; it created an accurate map on its first run. I found the virtual
walls and no-go function to fit my needs perfectly.

A general approach to creating a summary, similar to past

approaches3,4,5, would be to first extract information about the
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features of the product and the value of that feature provided,

which might be yes-no, or qualitative (fast, quiet), or quantitative

(150 minutes). Then, the system could collect information for

each feature across the set of reviews and either generate a sen-

tence for each feature or create sentences for all the liked features

and for all the disliked features.

Recent automated approaches to creating aggregated reviews

do not produce actual text, that is, they do not summarize or

generate text, because they treat it as more of a classification

problem. For example, one approach, called Abstractive Opinion

Tagging6 used analyzed reviews of Hot-Pot restaurants to pro-

duce a ranked list of the top five items as: [hospitable service

(223), delicious food (165), value for money (104), comfortable

environment (65), served quickly (14)]. The tag “delicious food”

would apply to sentences with phrases like “I was pleasantly sur-

prised about how yummy the dish and the lamb were”, “The

shrimp was fresh and the pork mixture was tasty”, and “Food is

delicious”. While tagging features is useful for supporting certain

kinds of searches, it does not address natural language genera-

tion or summarization.

9.2 NATURAL LANGUAGE GENERATION

The task of a natural language generation (NLG) system is to

create a text that will achieve a specified communicative goal.

There are three steps to this: first, deciding what to say at the

conceptual level (which maps a broad goal, like “respond” onto

specific subgoals); second, deciding how to organize the infor-

mation into sentences; and third, creating output as a sequence

of words. These tasks are known as content selection, sentence

planning, and realization, respectively. Some natural language

generation tasks do not require planning or realization, because

the target output is mostly fixed, and thus selecting the output

form can be handled as a classification task. The goal of separat-

ing sentence planning and realization as a general service is to

minimize the amount of linguistic knowledge that systems must
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encapsulate, so that they can focus on manipulating information

at the task level.

Content selection involves creating a description of the con-

tent to be expressed, and possibly also the reason for expressing

it, such as “to support quantitative comparison” (e.g., to allow one

to compare the size or cost of two alternatives)7,8. Selecting con-

tent is normally a function within an application. To make it eas-

ier to use standardized components for the other steps however,

applications might represent the selected content in a standard-

ized form, such as a set of relational triples, as a record structure

with multiple slots, or as a table, with labelled columns.

Sentence planning involves grouping content into a non-

redundant set of sentences that will be easy to understand. (It

is not a good idea to put every concept in a separate sentence

because it becomes unnaturally repetitive.) Thus, in sentence

planning, a system should keep track of what has already been

conveyed and select appropriate referring expressions, including

pronouns and shortened descriptions. Coherence is improved by

adding cue phrases and discourse markers to indicate discourse

relations or rhetorical structure (as discussed in Chapter 7). Cue

phrases are expressions like “for example” or “The second phase”.

Sentence planning might also determine that entire clauses

should be excluded because they are already part of the context

of the interaction. To leave them in would create the mistaken

inference that it was new information or that the speaker

believes that the hearer has some defect in their hearing or

understanding.

Sentence realization produces well-formed sequences of

words in a target language. The input will be a sentence plan,

which might be a semantic representation or a list of slot-filler

pairs. There are several ways the plan might be mapped onto

text. The simplest approach is to use canned text, which is any

text that has been entirely pre-written, and to provide the map-

ping explicitly, using a form or table. This approach is how most

chatbots and IVR systems produce their output. (Canned text can
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supply a broader range of outputs, but only by hand-coding col-

lections of alternative sentences that achieve the same intent.)

Rule-based approaches can specify patterns that include desig-

nated variables that are instantiated from a database or discourse

context. A few dialog frameworks support these outputs, and

automated form letter generators have always worked this way.

When these patterns are more sophisticated, they are called tem-

plates, and may include functions for assuring that the sentences

are all grammatical without forcing the application to know all

derivations of a root form9,10. The most flexible approach to

realization uses a fine-grained grammar to do realization, similar

to reversing the action of a rule-based parser, typically one that

relies on feature unification. Unification, with a grammar that

includes precise specification of grammatical features, would be

best for offline applications where output quality is more impor-

tant than speed, such as professional reports11.

9.3 TEXT SUMMARIZATION

Summarization maps an input text to a shorter one that pre-

serves its essential meaning, where what is essential may depend

on the task. For example, for information retrieval, one might

want to make it clear to the user how a document uses the key-

words in the query, so that they will understand the relevance.

Other applications of summarization include automatically pro-

viding an abstract of a particular length for a website or pro-

viding a summary of news stories gathered across multiple

documents (such as news.google.com). Summarization is most

often extractive, which means that the summaries comprise

selected complete sentences from the original. The alternative

is abstractive summarization, which means the summaries com-

prise entirely new sentences that express the desired content,

which would be akin to translation, where the source and target

languages are the same.

Traditional methods for extractive summarization traverse the

entire text and rank each sentence based on a hand-built scoring
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function. One popular choice involves first computing the tf-

idf score for each word (as used for the Vector Space Model

discussed in Chapter 8) and selecting all words with a score

above a given threshold (called a “centroid”) and then scoring

each sentence based on similarity with the centroid, which is

a vector that represents an average over all the sentences of

the unit. A similar, but more sophisticated idea is to score each

sentence based on its similarity to semantic vectors trained for

the entire document, treated as a “sentence”. These vectors are

known as “universal sentence embeddings”12. Figure 9.3 shows

the original text of a journal abstract by de Wilde et al (2018)13,

along with an extractive summaries by two systems, provided

online by SMRZR.io and DeepAI.org. (The highlighting shows

which sentences each summarizer selected.) The summary on the

top right, by the tool SMRZR.io, reports using a technique based

on the BERT deep learning architecture. BERTs for summariza-

tion are trained to create an embedding for the entire document,

and then sentences are compared against this vector. The sum-

mary on the bottom right in Figure 9.3 shows a summary pro-

vided by DeepAI.org. (Unfortunately no information is provided

about their approach.) The summary is reasonable. It is less read-

able than the other as a summary, but includes more technical

content. Unsupervised approaches can also be trained to select

a set of semantically related sentences (to form a more cohesive

text)14. An alternative to such unsupervised approaches would be

to train a supervised machine learning model using data where

each sentence is labeled with the class INCLUDED or NOT-

INCLUDED15, but few such data sets exist.
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Figure 9.3 Examples of extractive text summarization

Original text by de Wilde et al (2018)

Coronaviruses are pathogens with a serious
impact on human and animal health. They
mostly cause enteric or respiratory disease,
which can be severe and life threatening, e.g.,
in the case of the zoonotic coronaviruses
causing severe acute respiratory syndrome
(SARS) and Middle East Respiratory
Syndrome (MERS) in humans. Despite the
economic and societal impact of such
coronavirus infections, and the likelihood of
future outbreaks of additional pathogenic
coronaviruses, our options to prevent or
treat coronavirus infections remain very
limited. This highlights the importance of
advancing our knowledge on the replication
of these viruses and their interactions with
the host. Compared to other +RNA viruses,
coronaviruses have an exceptionally large
genome and employ a complex genome
expression strategy. Next to a role in basic
virus replication or virus assembly, many of
the coronavirus proteins expressed in the
infected cell contribute to the
coronavirus-host interplay. For example, by
interacting with the host cell to create an
optimal environment for coronavirus
replication, by altering host gene expression
or by counteracting the host’s antiviral
defenses. These coronavirus-host
interactions are key to viral pathogenesis
and will ultimately determine the outcome of
infection. Due to the complexity of the
coronavirus proteome and replication cycle,
our knowledge of host factors involved in
coronavirus replication is still in an early
stage compared to what is known for some
other +RNA viruses. This review summarizes
our current understanding of
coronavirus-host interactions at the level of
the infected cell, with special attention for
the assembly and function of the viral
RNA-synthesising machinery and the
evasion of cellular innate immune responses.

Extractive summary provided by SMRZR.io
(September 2020)

Coronaviruses are pathogens with a serious
impact on human and animal health . This
review summarizes our current
understanding of coronavirus-host
interactions at the level of the infected cell ,
with special attention for the assembly and
function of the viral RNA-synthesising
machinery and the evasion of cellular innate
immune responses .

Extractive summary provided by DeepAI.org
(September 2020)

Next to a role in basic virus replication or
virus assembly, many of the coronavirus
proteins expressed in the infected cell
contribute to the coronavirus-host interplay.
Due to the complexity of the coronavirus
proteome and replication cycle, our
knowledge of host factors involved in
coronavirus replication is still in an early
stage compared to what is known for some
other +RNA viruses.

An abstractive approach to summarization might identify and

rank concepts rather than sentences, for example by mapping a

text onto a set of relational triples) and then use a standard nat-

ural language generation pipeline. (This approach is like treating

summarization akin to machine translation, where the source

and target just happen to be the same language.) Of the two,

extractive summarization has been the most commonly used –

because it is the easiest to do. However, there has been increas-
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ing interest in abstractive summarization, especially by applying

recent work on semantic textual similarity.

Other promising approaches to summarization, which could

be either extractive or abstractive, make use of ranking methods

developed for information retrieval, such as TextRank to select

relevant sentences or concepts16, 17.

The quality of a text summary can be evaluated in several

ways18. The expectation is that the summary will be similar to

the reference document from which it was created, so measures

of general document similarity used in information retrieval

(such as cosine similarity or BM25) are an option. Other methods

count topics, which are sets of co-occurring words derived using

clustering algorithms, such as Latent Semantic Analysis. Another

method, created specifically for summarization and translation,

is known as ROUGE, for “Recall-Oriented Understudy for Gist-

ing Evaluation”19. The ROUGE method counts and compares

surface units, such as the number of overlapping n-grams,

between summaries created automatically and summaries cre-

ated by human experts. It thus requires a training set that

includes expert summaries. Going forward, new methods are

being devised that make use of meaning representations created

via machine learning to measure semantic similarity between

the summary and either the reference text, or a hand-built sum-

mary20.

9.4 MACHINE TRANSLATION

Machine Translation systems are systems that translate text from

a source language into one or more target languages (or for

assisting human translators in their task, known as machine-

aided translation). The primary goal is to preserve the meaning

of the original while observing the language conventions of the

target language. Literary translation systems may have the added

goal of preserving stylistic aspects of the original, including pre-

serving the intended effects (such as amusement or suspense)21,

22. While the idea of machine translation is almost as old as com-
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puter science itself, it did not become practical until the develop-

ment of methods based on statistical language modelling23.

The standard current approach for developing largescale

machine translation systems is to train paired language models

that link syntactic structures (phrases) from a source language

onto a single target, based on a collection of translated texts.

These pairs of multilingual datasets form what are known as

parallel corpora24. An example of translated sentence pairs is

shown below in Figure 9.4, where translations from English to

French were created using the online version of Google Trans-

late25. From this collection, a model might learn to translate

some words and phrases correctly, e.g. “the cat” -> “le chat”, “the

mat” -> “le tapis”, “on” -> “sur”, “under” -> “sous”. It likely could

not correctly learn “is sleeping”, “is standing”, or “stands” because

of the variation in the words used for these expressions.

Figure 9.4 Examples of English-French parallel text

English French

The cat is sleeping on the mat. Le chat dort sur le tapis.

The cat is standing on the mat. Le chat est debout sur le tapis.

The cat stands on the mat. Le chat se tient sur le tapis.

On the mat, the cat is standing. Sur le tapis, le chat est debout.

The cat is sleeping under the bed. Le chat dort sous le lit.

Under the bed, the cat is sleeping. Sous le lit, le chat dort.

Some of the most recent machine translation modelling

approaches employ neural networks26, although methods based

on phrase-based statistical modelling still outperform them for

some language pairs27. With a trained model associating phrases

from the two languages, an efficient search algorithm or clas-

sifier can find the highest probability translation among previ-

ously seen sentences in the target language.

Earlier approaches to machine translation based on rules

sometimes translated from a single source to multiple targets at

once (multilingual translation) by means of an intermediate rep-
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resentation called an interlingua. This approach has been used

in commercial settings where translation into 100’s of target

languages must be completed quickly and the domain is rather

small (e.g., repair manuals for farm machinery). Use of an inter-

lingua to support neural network-based multilingual translation

has shown both promise and challenges28,29.

Evaluation of Machine Translation systems most often use

the same metrics for evaluating Natural Language Generation,

such as ROUGE or BLEU. One metric developed specifically for

Translation is called METEOR, which its orignators describe as

follows:

[It scores] “machine translation hypotheses by aligning them to one

or more reference translations. Alignments are based on exact,

stem, synonym, and paraphrase matches between words and

phrases. Segment and system level metric scores are calculated

based on the alignments between hypothesis-reference pairs. The

metric includes several free parameters that are tuned to emulate

various human judgment tasks” 30.

A version of the Meteor scoring metric has been implemented in

NLTK V3.531.

Commercial providers (such as Google) provide APIs that sup-

port high-quality translation for a wide range of language pairs.

For less common languages and dialects or specialized domains,

open source tools, such as MOSES, are available to create

machine translation systems by training them with a parallel cor-

pus32. MOSES uses a statistical approach. There are several open

source toolkits for creating neural network based machine trans-

lation systems, including OpenNMT33, Sockeye34 and Marian-

NMT35.

9.5 SUMMARY

This chapter considered three related tasks, text generation, text

summarization, and automated translation of natural language

text, which all involve the output of well-formed natural lan-
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guage, rather than just the analysis of language data. The output

for each of these tasks can be specified as a set of concepts using

a representation of meaning, or as a sequence to sequence oper-

ation that will maximize some objective function, such as max-

imizing semantic similarity, while at the same time creating

output in the target language and at the target length. The lack

of parallel input-output data sets has led to many approaches that

rely on hand-built rules. Some systems are experimenting with

machine learning based methods, where datasets might already

exist (e.g., because of government requirements to create docu-

ments in multiple language) or can be created using crowdsourc-

ing.
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APPENDIX: TOP DOWN CHART PARSING

Top-down chart parsing methods, such as Earley’s algorithm,

begin with the top-most nonterminal and then expand down-

ward by predicting rules in the grammar by considering the

rightmost unseen category for each rule. Compared to other

search-based parsing algorithms, top-down parsing can be more

efficient, by eliminating many potential local ambiguities as it

expands the tree downwards1. Figure A1 provides the process-

ing rules for Earley’s algorithm. Figure A.2 provides pseudocode

for the algorithm, implemented as dynamic programming.

Figure A.1 Processing Rules for Earley’s Algorithm

Top-down initialization: When category S is the root category of the grammar,

then for every rule with S on the LHS, create an empty edge at position [0:0] with a

dot leftmost on the RHS. That is, whenever S -> A B, for some A, add an edge [0:0]

S -> * A B

Top-down prediction rule: When category X is expected (i.e., just to the right of a

dot) then for all rules where X is on the LHS, add a new edge where the dot is left-

most on the RHS with a span of length zero at the current end point. (This rule will

be repeated multiple times until no new predictions can be made). That is, when-

ever ([i:k] A -> W * X Y) and X -> S T, for some X, add a new edge [k:k] X -> * S

T. (Note: W can be empty.)

Fundamental rule: When a new category is seen or nonterminal created, then for

all active rules where the category is leftmost on the RHS of the dot, and the spans

are adjacent, create a new edge with the dot moved to the left of that category and

combine the spans. That is, whenever ([i:j], A -> X * Y Z and [j:k] Y -> S T * , for

some j and Y, add a new edge [i:k], A -> X Y * Z (Note: X and Z can be empty.)

To illustrate a top down chart parse, we will assume the CFG

shown in Figure A.3.
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Figure A.3. A small CFG for parsing “the dog likes meat”.

S → NP VBD
S → NP VP
NP → DT NN
VP → VBZ NN

NN → dog | meat
VBD → barked
VBZ → likes
DT → the

Figure A.4 shows a trace of a top-down chart parse of the sen-

tence “The dog likes meat.”, showing the edges created in the top-

down chart parser implemented in NLTK. The parse begins with

top-down predictions, based on the grammar, and then begins

to process the actual input, which is shown in the third row. As

each word is read, there is a top-down prediction followed by an

application of the fundamental rule. After an edge is completed

(such as the first NP) then new predictions are added (e.g., for an

upcoming VP).

252 SUSAN MCROY



Figure A.4. Trace of a top-down chart parse of the sentence “The dog likes meat.”

[0:0] S→ * NP VBD
[0:0] S→ * NP VP

For each of the
sentence rules,
make a
top-down
prediction to
create an
empty, active
edge.

[0:0] S→ * NP VBD
[0:0] S→ * NP VP
[0:0] NP→ * DT NN

Make more
top-down
predictions to
create active
edges for each
of the
nonterminal
categories just
to the right of
the dot.

[0:0] S→ * NP VBD
[0:0] S→ * NP VP
[0:0] NP→ * DT NN
[0:0] DT→ * the
[0:1] DT→ the *
[0:1] NP→ DT * NN

Predict the and
use the
fundamental
rule to create
new edges
where the dot
in the DT rule
and in NP rule
move to the
right.

[0:0] S→ * NP VBD
[0:0] S→ * NP VP
[0:0] NP→ * DT NN
[0:0] DT→ * the
[0:1] DT→ the *
[0:1] NP→ DT * NN
[1:1] NN→ * dog
[1:2] NN→ dog *
[0:2] NP→ DT NN *
[0:2] S→ NP * VBD
[0:2] S→NP * VP
[2:2] VP→ * VBZ NN

Predict dog;
apply
fundamental
rule and then
make a top
down
prediction for a
VP (using the
second S rule.)
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[0:0] S→ * NP VBD
[0:0] S→ * NP VP
[0:0] NP→ * DT NN
[0:0] DT→ * the
[0:1] DT→ the *
[0:1] NP→ DT * NN
[1:1] NN→ * dog
[1:2] NN→ dog *
[0:2] NP→ DT NN *
[0:2] S→ NP * VBD
[0:2] S→NP * VP
[2:2] VP→ * VBZ NN
[2:2] VBZ→ * likes
[2:3] VBZ→ likes *
[2:3] VP→VBZ * NN

Predict likes;
apply the
fundamental
rule to create
VBZ-> likes *,
and again, to
add VP -> VBZ
* NN

[0:0] S→ * NP VBD
[0:0] S→ * NP VP
[0:0] NP→ * DT NN
[0:0] DT→ * the
[0:1] DT→ the *
[0:1] NP→ DT * NN
[1:1] NN→ * dog
[1:2] NN→ dog *
[0:2] NP→ DT NN *
[0:2] S→ NP * VBD
[0:2] S→NP * VP
[2:2] VP→ * VBZ NN
[2:2] VBZ→ * likes
[2:3] VBZ→ likes *
[2:3] VP→VBZ * NN
[3:3] NN→ * meat
[3:4] NN→ meat*
[2:4] VP→VBZ NN *
[0:4] S→NP VP *

Predict meat
apply the
fundamental
rule for meat
as a noun (NN)
and again to
extend the
active VP edge,
to get VP ->
VBZ NN *.
Finally, use the
fundamental
rule to extend
the active S
edge, which is
now complete.

Notes

1. Bottom-up chart parsing algorithms, as we discussed in Chapter 4,

do have some advantages. For example, bottom-up methods can use

rules annotated with probabilities or semantics, and then propagate

values up from the leaf to the root for each subtree.

254 SUSAN MCROY


	Principles of Natural Language Processing
	Principles of Natural Language Processing
	Contents
	Acknowledgements
	Preface
	Notes
	Natural Language Processing as a Discipline
	Notes

	Data Structures and Processing Paradigms
	Notes

	Overview of English Syntax
	Notes

	Grammars and Syntactic Processing
	Notes

	Semantics and Semantic Interpretation
	Notes

	Benchmark Tasks for Language Modelling
	Notes

	Discourse and Dialog
	Notes

	Question Answering, Text Retrieval, Information Extraction, & Argumentation Mining
	Notes

	Natural Language Generation, Summarization, & Translation
	Notes


	Appendix: Top Down Chart Parsing
	Notes


